
Oracle® WebCenter Sites
Developer’s Guide for the
Web Experience Management Framework

11g Release 1 (11.1.1)

April 2012

Oracle® WebCenter Sites Developer’s Guide for the Web Experience Management Framework,
11g Release 1 (11.1.1)

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Tatiana Kolubayev

Contributing Author: Melinda Rubenau

Contributor: Bill Habermaas, Alex Vushkan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

3

Table of

Contents
About This Guide .7
Audience . 7
Related Documents . 7
Conventions . 8
Third-Party Libraries . 8

1 Welcome to Oracle WebCenter Sites: WEM Framework 9
Introduction . 10
Prerequisites for Application Development . 12
Getting Started. 15

2 Overview . 17
WEM Framework . 18
REST Services. 18
UI Container . 20

Registration . 20
WEM Context Object . 21

Single Sign-On . 22
Authorization Model . 23
Custom Applications . 25

3 ‘Articles’ Sample Application . 27
Overview . 28
Launching the ‘Articles’ Sample Application . 29

Building and Deploying the ‘Articles’ Application . 29
Registering the ‘Articles’ Sample Application . 30

Testing the ‘Articles’ Application . 32
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Table of Contents
4

4 Developing Applications . 33
Overview . 34
Application Structure. 34
Making REST Calls. 38

Making REST Calls from JavaScript . 38
Making REST Calls from Java . 40

Constructing URLs to Serve Binary Data . 40
Context Object: Accessing Parameters from the WEM Framework. 41

Same Domain Implementations . 41
Cross-Domain Implementations . 42
Methods Available in Context Object. 44

Registration Code . 45
Registering Applications with an iframe View. 45
Registering Applications with JavaScript and HTML Views. 46

5 Developing Custom REST Resources . 49
‘Recommendations’ Sample Application . 50

Overview. 50
Building and Deploying the Application . 50
Testing the Application. 50

Creating REST Resources . 51
Application Structure . 51
Steps for Implementing Custom REST Resources . 52

6 Single Sign-On for Production Sites . 53
SSO Sample Application . 54
Deploying the SSO Sample Application . 54
Application Structure. 55
Implementing Single Sign-On. 56
Implementing Single Sign-Out . 57

7 Using REST Resources . 59
Authentication for REST Resources . 60

Acquiring Tickets from Java Code . 60
Acquiring Tickets from Other Programming Languages (Over HTTP). 61
SSO Configuration for Standalone Applications . 63

Configuring CAS. 67
REST Authorization . 68

Security Model . 68
Using the Security Model to Access REST Resources. 69
Configuring REST Security . 69
Privilege Resolution Algorithm . 69
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Table of Contents
5

Managing Assets Over REST . 70

8 Customizable Single Sign-On Facility . 71
Customizing Login Behavior for the WEM Framework . 72
Components of the Default CSSO Implementation . 73
Configuring and Deploying Custom SSO Behavior . 74

Extending the Default CSSO Classes . 75
Identifying Your Java Classes to Spring for Instantiation . 77
Mapping External User Identifiers to WebCenter Sites Credentials 80
Restarting the CAS Web Application . 82

Running the CSSO Sample Implementation . 83
Sample CSSO Classes. 84
Sample Spring Configuration File . 85
Sample CSSO Components . 87

9 Buffering . 89
Introduction . 90
Architecture . 90
Using Buffering . 91

Appendix A. Registering Applications Manually .93
Registration Steps . 94
Reference: Registration Asset Types . 98

FW_View Asset Type. 98
FW_Application Asset Type. 99
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Table of Contents
6

Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

7

About This Guide
This guide provides information about the Oracle WebCenter Sites: Web Experience
Management (WEM) Framework as it relates to application development. This guide
contains an overview of the WEM Framework, and moves on to describe the process of
developing applications and custom Representational State Transfer (REST) resources.
This guide also provides information about implementing and customizing Single Sign-
On (SSO).
Applications discussed in this guide are former FatWire products. Naming conventions are
the following:
• Oracle WebCenter Sites is the current name of the application previously known as

FatWire Content Server. In this guide, Oracle WebCenter Sites is also called
WebCenter Sites.

• Oracle WebCenter Sites: Web Experience Management Framework is the current
name of the environment previously known as FatWire Web Experience Management
Framework. In this guide, Oracle WebCenter Sites: Web Experience Management
Framework is also called WEM Framework.

Audience
This guide is for WebCenter Sites developers. Users are assumed to have a comprehensive
knowledge of the WebCenter Sites Admin interface, basic and flex asset models, Asset
API, and ACLs. Users should also be familiar with the concept of sites and roles. Users of
this guide must also have a working knowledge of Representational State Transfer
(REST), Central Authentication Service (CAS), Java Server Pages Standard Tag Library
(JSTL), Java, JavaScript, Jersey, and the Spring MVC framework.

Related Documents
For more information, see the following documents:
• Oracle WebCenter Sites Administrator’s Guide
• Oracle WebCenter Sites Developer’s Guide
• Oracle WebCenter Sites Administrator’s Guide for the Web Experience Management

Framework
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

 About This Guide
8

• Oracle WebCenter Sites: Web Experience Management Framework REST API
Resource Reference

• Oracle WebCenter Sites: Web Experience Management Framework REST API Bean
Reference

Conventions
The following text conventions are used in this guide:
• Boldface type indicates graphical user interface elements that you select.
• Italic type indicates book titles, emphasis, or variables for which you supply particular

values.
• Monospace type indicates file names, URLs, sample code, or text that appears on the

screen.
• Monospace bold type indicates a command.

Third-Party Libraries
Oracle WebCenter Sites and its applications include third-party libraries. For additional
information, see Oracle WebCenter Sites 11gR1: Third-Party Libraries.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

9

Chapter 1

Welcome to Oracle WebCenter Sites: WEM
Framework
• Introduction
• Prerequisites for Application Development
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Introduction
10

Applicat
Introduction
The Oracle WebCenter Sites: Web Experience Management (WEM) Framework provides
the technology for developing applications and integrating them with Oracle WebCenter
Sites. A single administrative interface, WEM Admin, supports centralized application
management and user authorization. Single sign-on enables users to log in once and gain
access to all applications allowed to them during the session.
The WEM Framework requires a content management platform. In this release, the WEM
Framework runs on Oracle WebCenter Sites and ships with the WebCenter Sites
Representational State Transfer (REST) API. Objects in the WebCenter Sites database,
such as sites, users, and data model map to REST resources in the WEM Framework.

When implemented on the WEM
Framework, applications communicate with
the WebCenter Sites database through
REST services. The applications appear in
WEM Admin as list items on the Apps
page (Figure 1). Administrators authorize
users, which involves configuring access to
the applications and their resources. To this
end, the WEM Admin interface exposes
authorization items (along with
applications) through links on the
menu bar.

Figure 1: Apps Page, WEM Admin

ions
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Introduction
11
Coupling the items as shown in Figure 2 enables applications for users.

Figure 2: Authorization Model

Once the coupling is complete, users are authorized at the database, REST, and application
levels.

Experienced WebCenter Sites developers will recognize that the WEM Framework
extends the use of sites and roles to control access to applications. However, unlike
WebCenter Sites, the WEM Admin interface does not expose the data model. The REST
API does. In this respect, WEM Admin can be thought of as strictly an authorization
interface, supported by the WebCenter Sites Admin interface (for configuring ACLs and
groups).
Although WEM Admin is seldom used by developers, the concepts behind user
authorization can come into play in application development. The rest of this guide
describes the WEM Framework as it relates to application development and provides
examples of application code.

• Applications and users are assigned to sites via roles.
• Sharing a role to a user and an application on the same site grants the user

access to the application on that site.
• Users are assigned to groups, which control access to applications’ resources

(REST resources).
• ACLs are assigned to users, providing them with access to the system.
Using WEM Admin, general administrators can create and otherwise manage
sites, applications, users, and roles. Groups and ACLs must be configured in the
WebCenter Sites Admin interface. They are exposed in WEM Admin, in user
accounts.

ACLs control access to the system

Groups in WebCenter Sites
control access to REST
(applications’ resources)

Roles control access
to sites and
applications
on the sites
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Prerequisites for Application Development
12
Prerequisites for Application Development
Developing an application involves coding the application’s logic, deploying the
application, and registering the application to expose it in WEM Admin for administrators
to manage and make available to other users. This guide is not intended to be a tutorial on
application development, but a reference to orient experienced application developers to
the WEM Framework. Users of this guide must be expert WebCenter Sites developers
with a working knowledge of the technologies listed in this section. Required resources
are also listed below.

Technologies
• Representational State Transfer (REST), used to communicate with the WebCenter

Sites platform
• Central Authentication Service (CAS), which is deployed during WebCenter Sites

installation to support single sign-on for WEM
• Java Server Pages Standard Tag Library (JSTL), Java, JavaScript, Jersey, and the

Spring MVC framework, in order to follow the code of the “Articles” sample
application provided with WEM

WebCenter Sites Interfaces, Objects, and APIs
Developers must have a working knowledge of:
• WebCenter Sites Admin (the WebCenter Sites administrative interface)
• WebCenter Sites basic and flex asset models
• Asset API
• ACLs, which protect database tables and define the types of operations that can be

performed on the tables
• Concept of sites and roles

Documentation
To follow this guide you will need the following documentation:
• Oracle WebCenter Sites: Web Experience Management Framework REST API

Resource Reference
• Oracle WebCenter Sites: Web Experience Management Framework REST API Bean

Reference
Information about the WebCenter Sites data model and Asset API is available in the
Oracle WebCenter Sites Developer’s Guide. Information about ACLs, sites, and roles, and
their usage in WebCenter Sites is available in the Oracle WebCenter Sites Administrator’s
Guide.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Prerequisites for Application Development
13
Sample Applications and Files
• The following sample applications are used in this guide:

- Articles, a lightweight content management application
- SSO sample application, a small authentication application for production sites.

The application is packaged as wem-sso-api-cas-sample.war.
- Recommendations, which demonstrates the process of creating REST resources

• The Customizable Single Sign-On facility is used in this guide to illustrate
customization of login behavior.

• WEM Framework ships with sample files to illustrate cross-domain implementations
and management of assets over REST using our API.

All sample applications and files are located in the Misc/Samples/WEM Samples folder
in your WebCenter Sites installation directory.

Application Access
When using this guide, or developing and testing, you will access some or all of the
applications listed below:
• CAS web application. You will specify its URL in the “Articles” sample application

to enable single sign-on:
http://<server>:<port>/<cas_application_context>/login

where <server> is the host name or IP address of the machine running CAS and
<cas_application_context> is the context path of the CAS web application.

• WebCenter Sites Admin interface, if you decide to register applications manually:
http://<server>:<port>/<cs_application_context>/Xcelerate/

LoginPage.html

Log in with the credentials of the general administrator that was used during the
WebCenter Sites installation process (or an equivalent general admin). The default
login credentials are fwadmin/xceladmin (same for logging in to WEM Admin).

Note
General administrators on WebCenter Sites systems are specially configured
for the WEM Framework. During the installation process, fwadmin was
automatically added to the RestAdmin group for unrestricted access to
REST services, and enabled on AdminSite where the WEM Admin interface
runs. More information about WEM-related changes to WebCenter Sites is
available in the Oracle WebCenter Sites installation guides.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Prerequisites for Application Development
14
• WEM Admin, to test the results of your application registration process:
http://<server>:<port>/<cs_application_context>/login

Log in as fwadmin (or an equivalent user). The sequence of screens is the following:
1. Login Screen:

2. Transition screen (if you are logging in for the first time or in to a site that you
have never accessed before). Select AdminSite and the first icon, Admin:

3. WEM Admin Sites page. Registered applications are listed on the Apps page.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Getting Started
15
Getting Started
The chapters of this guide can be read in any order:
• For information about the WEM Framework, see Chapter 2, “Overview.”
• For a demonstration of the “Articles” application, see Chapter 3, “‘Articles’ Sample

Application.”
• For information about the “Articles” application code, programmatic application

registration, and cross-domain implementations, see Chapter 4, “Developing
Applications.” (An example of manual application registration is available in
Appendix A.)

• For information about creating REST resources, see Chapter 5, “Developing Custom
REST Resources.”

• For a demonstration of the SSO sample application, see Chapter 6, “Single Sign-On
for Production Sites.”

• For information about system security, see Chapter 7, “Using REST Resources.”
• For information about customizing the login behavior for the WEM Framework, see

Chapter 8, “Customizable Single Sign-On Facility.”
• For information about buffering, see Chapter 9, “Buffering.”
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 1. Welcome to Oracle WebCenter Sites: WEM Framework

 Getting Started
16
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

17
Chapter 2

Overview
• WEM Framework
• REST Services
• UI Container
• Single Sign-On
• Authorization Model
• Custom Applications
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 WEM Framework
18
WEM Framework
The application developer’s environment consists of the WEM Framework running on
WebCenter Sites via REST services. Applications can be written in any language to make
REST calls to WebCenter Sites. Custom-built applications can be deployed to an
application server other than the platform’s, and therefore written independently of the
platform’s deployment infrastructure.
Support for application development is in the following components (which are also
described in their own sections in this chapter):
• REST services, a set of programmatic interfaces that provide access to the WebCenter

Sites objects.
• UI container, which exposes registered applications. Registration enables rendering

of the applications’ interfaces. The UI container also supports the WEM Context
object, used by applications to get details from the WEM Framework about the
logged-in user and current site.

• Single Sign-On (SSO), which enables authenticated users to log in only once to
access all applications allowed to them during the session. (The WebCenter Sites
installation process installs the Central Authentication Service web application to
support single sign-on in WEM.)

• REST authorization model, which provides fine-grained access control over REST
resources, based on group membership. Application development does not directly
involve authorization (which is configured graphically in WEM Admin and the
WebCenter Sites Admin interface), except when a predefined user is specified in the
code.

WEM Admin is also part of the WEM Framework, but seldom used in application
development, mainly to test the results of the application registration process, or to obtain
administrative information about sites, users, groups, and roles. Information about WEM
Admin is available in the Oracle WebCenter Sites Administrator’s Guide for the Web
Experience Management Framework.

REST Services
The REST API exposes the WebCenter Sites data model:
• Basic asset types and basic assets (read-write)
• Flex asset types and definitions (read only)
• Flex children and parents (read-write)
• Indexing to support asset searches
The following objects are also exposed by the REST API. They are used mainly by
administrators in the authorization process (the objects are displayed in the WEM Admin
interface):
• Sites (read-write)
• Users (read-write)
• Roles (read-write)
• ACLs (read only)
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 REST Services
19
• Groups (read only), introduced in this release to control access to the REST layer.
• Auxiliary services: user locale and server time zone
(Sites, roles, and users can be configured in WEM Admin. ACLs and groups are exposed
in WEM Admin (under Users) as read-only items; they must be configured in the
WebCenter Sites Admin interface.)
Objects in WebCenter Sites map to REST resources in WEM. All other features, such as
publishing, workflow, database management tools, and page caching must be accessed
from the WebCenter Sites Admin interface or via JSP and XML tags.
Among the authorization objects that general administrators manage, sites and roles are
the most likely candidates for application development, depending on your requirements.
You can also specify “predefined” users to simplify administrators’ authorization tasks.
• Sites: Using sites in application code is a requirement when the application’s asset

types and assets must be programmatically installed. The code must specify at least
one site on which to enable the asset types (site-specific access to assets requires their
asset types to be enabled on at least one site). Otherwise, you can install just the asset
types (without naming any sites). Administrators will follow up by using the
WebCenter Sites Admin interface to enable the asset types and assets on sites of their
own choice.

• Roles in WEM are used to manage access to applications. Sharing a role to a user and
an application on the same site grants the user access to the application on that site.
Roles can be used in application code to protect interface functions, such as “Edit.”
The WebCenter Sites Admin interface exemplifies an application with role-protected
interface functions.

• Users: The only user you are likely to specify in your application code is the
“predefined” user, to simplify administrators’ authorization processes. Specifying the
user involves coding a user name and password. Instead of authorizing all application
users individually at the REST level, an administrator will authorize your predefined
user. Permissions granted to the predefined user will be passed to the logged-in users
when they access the application. More information about predefined users and the
authorization model can be found on page 23.

Keeping track of how sites and roles are used across the system is an administrators task
that requires support from application developers. Tracking becomes especially important
when the WebCenter Sites platform also functions as a staging system, only because the
WEM Framework uses the WebCenter Sites database. For example, sites created in WEM
Admin are stored in the database. They might not be used in WebCenter Sites for staging,
but they are exposed in the WebCenter Sites Admin interface, along with its dedicated CM
sites. Conversely, sites that are created in the WebCenter Sites Admin interface for CM
purposes are exposed in WEM Admin, where other applications can be assigned to those
sites. For users to be properly authorized, developers must communicate to administrators
the nature of the custom-built applications: the resources they use, role-protected interface
functions, and predefined users, if any.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 UI Container
20

Applicati
available
user on th
site

Selected
applicatio

Registere
applicatio
UI Container
The UI container exposes registered applications and supports the Context object, used by
applications to get information from the WEM Framework.

Registration
The purpose of registering an application is to expose the application in WEM Admin for
administrators to manage and make available to other users. Registration allows the
system to recognize the application as an asset, which in turn allows the system to
• list the application on the Apps page in WEM Admin (Figure 3),
• locate the icon you have chosen to represent the application,
• display the application’s icon on the WebCenter Sites login page, and in the

applications bar on each site to which the application is assigned (Figure 3), and
• render the application’s interface when the application’s icon is selected.

Figure 3: Registered Applications in UI Container

ons
to
is

n

Applications bar
Which applications are
exposed depends on
the site and the user’s
permissions on the site.

d
ns

Current site

UI container

Current user
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 UI Container
21
Registering an application includes registering its views. While multiple and shared views
are supported, applications with a single, unshared view are typical (and used in this
guide). Views can be of type iframe, HTML, and JavaScript.
To support registration, the WEM Framework ships with the basic asset types
FW_Application and FW_View. Both are created when the WEM option is selected
during the WebCenter Sites installation process. They are enabled by default on
AdminSite (also created during the WebCenter Sites installation process).
Registering an application (once it is deployed) requires creating an instance of
FW_Application, creating an instance of FW_View for each view, and associating the
FW_View instances with the FW_Application instance. Applications must be registered
on AdminSite, even if they will be used on other sites. Registration allows applications to
be assigned to other sites.
Applications can be registered either programmatically via the REST API’s
applications service, or manually from the WebCenter Sites Admin interface.
Programmatic registration is preferred. For an example, see “Registering the ‘Articles’
Sample Application,” on page 30. For general instructions, see “Registration Code,” on
page 45. (An example of manual registration is available in Appendix A.)

WEM Context Object
The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details from the
WEM Framework about the logged-in user and site (for example, the current site’s name
from the UI container). The Context object also provides various utility methods that
applications will use to share data. The Context Object can be used by applications
running in the same domain as WebCenter Sites or in different domains. For more
information, see “Context Object: Accessing Parameters from the WEM Framework,” on
page 41.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 Single Sign-On
22
Single Sign-On
Single sign-on is implemented using Central Authentication Service (http://
www.jasig.org/cas). As shown in the sample “Articles” example, the servlet filter that
ships with the WEM Framework can be used out-of-the-box for any application that is
deployed as a Java web application. If your application is developed using a different
technology, refer to CAS clients specific to your choice of technology, at the following
URL:

http://www.ja-sig.org/wiki/display/CASC/Official+Clients

When a user tries to access an application protected by CAS, the authentication system
responds with the steps below.
1. Initial Access

a. When the user first attempts to access an application protected by CAS,
b. the user is redirected to the CAS login page. Upon successful login,
c. the user is redirected back to the application with a ticket. The cookie for the CAS

login page is saved.
d. The application verifies the user’s identity by verifying the ticket against CAS.

(On content management systems, CAS authenticates by default against the
WebCenter Sites database.)

2. Subsequent Access
a. When the user attempts to access another application protected by CAS, the user

is redirected to the CAS login page.
b. The cookie is retrieved from the request, implicit login is performed, and the login

page is bypassed.
c. The user is redirected back to the application with a ticket.
d. The application verifies the user’s identity by verifying the ticket against CAS.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 Authorization Model
23
Authorization Model
Authorization is the process of granting users access to applications. General
administrators are responsible for authorization by using WEM Admin to couple objects
as shown in Figure 4. Developers can simplify the administrator’s task by coding a
predefined user in their applications. How the user fits into the authorization model is
explained below.

Figure 4: Authorization Model

In Figure 4, Site, Application, User, and Role each have a counterpart menu option in
WEM Admin. ACLs and groups are exposed on each user’s page.

Sites, applications, users, and roles are
configurable in WEM Admin.

Groups and ACLs must be configured in the
WebCenter Sites Admin interface. They are
exposed in WEM Admin

WEM Admin Menu bar
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 Authorization Model
24
Authorization is managed at three levels: application, REST, and database.
• Application-level authorization requires sharing a role to a user and an application on

the same site, which grants the user access to the application on that site. If interface
functions are role-protected, their roles as well must be shared to the application users.

• REST-level authorization regulates the user’s permission to operate on the
application’s resources – assuming ACLs are correctly assigned. REST-level
authorization requires configuring groups with privileges to operate on objects that
map to REST resources. Users who are assigned to a group gain the group’s
privileges.
Developers can define a user in their applications (by user name and password) to act
as a proxy for logged-in users, which eliminates the need for administrators to
configure REST security for each logged-in user. Once an application is deployed and
registered, a general administrator authorizes its predefined user by: 1) configuring the
predefined user in WEM Admin for application access, 2) configuring a group (in the
WebCenter Sites Admin interface) with privileges to operate on the applications’
resources, and 3) assigning the predefined user to the group (by using either the WEM
Admin or the WebCenter Sites Admin interface). The group’s privileges are passed to
the predefined user and then to logged-in users when they access the application.
Supported security configurations are described and listed in “REST Authorization,”
on page 68. (The “Articles” sample application provided with the WEM Framework
specifies a predefined user.)

• At the database level, ACLs determine the individual user’s access to the system, i.e.,
permission to log in and operate on the database, regardless of the user’s membership
in any groups. If a user lacks the appropriate ACLs and therefore permissions to the
database tables, then membership in a group does not grant those permissions.
Default ACLs give users almost unrestricted permissions – but not the means – to
operate on objects in many of the database tables. Those permissions are modulated at
the REST level: Either directly by the user’s membership in groups (in the absence of
a predefined user), or indirectly by the application’s predefined user and his
membership in groups. Modifying a group’s privileges to operate on objects modifies
the group member’s privileges to operate on resources. The same user on the
WebCenter Sites side remains unaffected by group memberships. Permissions to
content are still regulated by ACLs and actuated by sites and roles.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 Custom Applications
25
Custom Applications
Custom applications developed in WEM are often implemented in a loosely coupled
manner to the content management platform. Because custom applications utilize the
REST API Web services and SSO mechanism enabled by the WEM Framework, they are
often deployed to an application server other than the platform’s application server.
Developers can therefore write custom applications completely independently of the
platform’s deployment infrastructure. Most custom applications are deployed remotely
(Figure 5).

Figure 5: Remote Application Deployment

Custom applications can be implemented as content management or delivery applications.
We recommend getting started with the content management side, as it typically does not
require much performance tuning effort.
The WEM Framework ships with several lightweight sample applications, which you can
launch and analyze as models for developing your own applications. “Articles” illustrates
a content management application. Chapter 3 contains instructions for launching
“Articles.” Specifications can be found in chapter 4, source code is provided in the
WebCenter Sites Misc/Samples folder, and other supporting information is provided in
the REST API resource and Bean references. The SSO sample application is for
authentication on live sites and the “Recommendations” application illustrates the creation
of REST resources.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 2. Overview

 Custom Applications
26
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

27
Chapter 3

‘Articles’ Sample Application
• Overview
• Launching the ‘Articles’ Sample Application
• Testing the ‘Articles’ Application
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 3. ‘Articles’ Sample Application

 Overview
28
Overview
“Articles” is a simple content management application with richly documented source
code and a self-installation process to help you quickly master information that is most
important to developing applications. As the name implies, “Articles” enables the
management of article assets. The application’s home page looks like this:

The “Articles” home page displays two articles that can be edited directly in WEM, from
the custom interface that you see in the figure above. The application demonstrates usage
of the WebCenter Sites REST API to perform a search query from Java code and an asset
modification query from JavaScript code. The “Articles” application and REST services
can be run on different application servers. Cross-domain restrictions in JavaScript
prevent AJAX calls directly from the “Articles” application to the REST services. This is
why a simple ProxyController is introduced. It redirects calls from JavaScript to WEM
REST Web Services. Custom implementations may reuse this controller implementation.
The “Articles” application is based on the Spring MVC framework. “Articles” includes a
predefined administrative user named fwadmin with password xceladmin, who is
assigned to the REST group named RestAdmin. The application’s self-installer contains
specifications for registering the “Articles” application and installing its asset model and
sample articles. The application does not have internally configured sites or role-protected
functions. It has a single, iframe view. Additional specifications are available in Chapter 4,
“Developing Applications.”
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
29
Launching the ‘Articles’ Sample Application
In this section, you will first build and deploy the “Articles” application, then run the
installer.

Building and Deploying the ‘Articles’ Application
1. Determine or create the site to which you will assign the sample articles application.

The default site is FirstSite II (a sample WebCenter Sites CM site). It is possible that
FirstSite II is not installed on your system.
To select or create a site, log in to WEM Admin at the URL
http://<server>:<port>/<cs_application_context>/login
using the credentials of a general administrator (fwadmin / xceladmin are the
default values).

2. Download and install SUN JDK (1.5 or later) from the following URL:
http://java.sun.com/

3. Download the latest Apache Ant from http://ant.apache.org/ and place the
Ant bin directory into the system PATH.

4. Copy servlet-api.jar to the “Articles” application lib folder. The jar file can
be taken from your application server’s home directory (for example, Tomcat’s
servlet-api.jar is located in the home lib directory).

5. Set the following parameters in the applicationContext.xml file (in
src\articles\src\main\webapp\WEB-INF\):
- casUrl: Specify the URL of the CAS application:

http://<server>:<port>/<context_path>
- csSiteName: Specify the name of the site that you selected in step 1.
- csUrl: Specify the URL where the WebCenter Sites platform is running:

http://<server>:<port>/<context>

- csUserName: The default value is fwadmin. This is the application’s predefined
user, a general administrator with membership in the RestAdmin group which
has unrestricted permissions to REST services. If you specify a different user, you
must name a user equivalent to fwadmin. Instructions for creating a general
administrator can be found in the Oracle WebCenter Sites Administrator’s Guide
for the Web Experience Management Framework.

- csPassword: Specify the predefined user’s password.
- articlesUrl: Point to the URL where the sample application will be accessed.

6. Run the Ant build with the default target (enter ant on the command line).

Note
In step 5, you will specify the site you have chosen here, which will allow
the installer to enable the application’s asset model and assets on that site.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
30
7. Deploy the resulting target/articles-1.0.war to an application server.
On deployment, the following content is copied from source to target: The contents of
the lib folder are copied to /WEB-INF/lib. The contents of the resources folder
are copied to /WEB-INF/classes/. For information about the structure of the source
application, see Chapter 4, “Developing Applications.”

Registering the ‘Articles’ Sample Application
The “Articles” application has a self-installer, which starts running when you log in to the
install.app page. The installer registers the sample application (including the view)
and creates its data model and assets in the WebCenter Sites database.

To run the ‘Articles’ installer

1. Navigate to the install.app page:
http://<hostname>:<portnumber>/<context_path>/install.app

For example:
http://localhost:9080/articles-1.0/install.app

2. Use any credentials to log in (the application’s predefined user, specified by
csUserName and csPassword on page 29, provides you with permissions to the
application. The sample application does not perform authorization checks as it does
not use roles.)

3. The self-installation process invokes InstallController.java, which first
registers the application (including the view, in an application Bean), then writes the
sample asset type and assets to the database.
a. InstallController.java registers the “Articles” application with the WEM

Framework:
- InstallController.java creates an application asset named Articles

(asset type FW_Application) in the WebCenter Sites database.
The iconurl attribute points to the URL where the icon representing the
application is located.
The layouturl attribute specifies the URL of the layout.app page
(implemented by LayoutController.java). The layout.app page
defines the application layout.
The layouttype attribute takes the default (and only) value:
layoutrenderer. Using the layoutrenderer value, the UI container is
responsible for rendering the application’s associated views by using the
layout.app page, specified by layouturl.

- InstallController.java creates a view asset named ArticlesView
(asset type FW_View) in the WebCenter Sites database. The association

Note
Specifications for the registration asset types FW_View and FW_Application
can be found in the Oracle WebCenter Sites: Web Experience Management
Framework REST API Bean Reference (and in Appendix A).
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
31
between the view asset and the application asset is made through the views
attribute in the FW_Application asset type.

b. InstallController.java installs the application’s asset model and sample
assets:
- Creates the application’s FW_Article asset type in the WebCenter Sites

database. (FW_Article is a basic asset type defined in
InstallController.java.)

- Enables the FW_Article asset type on the site that was specified in the
csSiteName parameter in applicationContext.xml (step 5 on page 29).

- Writes the two sample article assets to the FW_Article asset type tables.
(The articles’ text and images are stored in:
 /sample app/articles/src/main/resources/install)

c. InstallController.java creates an asset type-based index to support
searches on assets of type FW_Article. (The controller specifies index
configuration data.)

4. When the installation process completes successfully, InstallController.java
displays the following page (at http://<server>:<port>/articles/
install.app), where Home is home.app:
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 3. ‘Articles’ Sample Application

 Testing the ‘Articles’ Application
32
Testing the ‘Articles’ Application
1. Navigate to the home.app page:

http://<hostname>:<portnumber>/<context_path>/home.app

For example:
http://localhost:8080/articles-1.0/home.app

2. Use any credentials to log in (the application’s predefined user, specified by
csUserName and csPassword on page 29, provides you with permissions to the
application. The sample application does not perform authorization checks as it does
not use roles.)
WEM displays the application’s home page:

3. If you wish to experiment with this application (for example assign it to other sites and
add users), use WEM Admin. For more information, refer to the Oracle WebCenter
Sites Administrator’s Guide for the Web Experience Management Framework.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

33
Chapter 4

Developing Applications
• Overview
• Application Structure
• Making REST Calls
• Constructing URLs to Serve Binary Data
• Context Object: Accessing Parameters from the WEM Framework
• Registration Code
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Overview
34
Overview
The “Articles” sample application is used throughout this chapter to illustrate the basic
architecture of an application that makes REST calls.

Application Structure
Figure 6 shows the source structure of the “Articles” sample application. On deployment,
the following directories are copied from source to target: The contents of the lib
directory are copied to /WEB-INF/lib/. The contents of the resources directory are
copied to /WEB-INF/classes/.

Figure 6: ‘Articles’ Sample Application Source Structure

source files

installer
resources

 views

 scripts
 styles

 TLD

 home page
files

logger file

 configuration
files
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Application Structure
35
“Articles” is a Java Web application developed on Spring MVC. The following pages are
available:
• /install.app is the “Articles” installation page, which also displays a confirmation

message when the application is successfully installed
• /home.app is the home page of the “Articles” application (page 28).

Configuration Files
• applicationContext.xml (in /WEB-INF/) holds SSO and application-specific

configurations (such as a predefined user and the site on which to enable the data
model and assets).

• spring-servlet.xml (in /WEB-INF/) is the default Spring configuration file. This
file stores the Spring configuration and references the following controllers (described
in “Source Files”):
- HomeController

- InstallController

- LayoutController

- ProxyController

• log4j.properties (in /resources/) is the logging configuration file. On
application deployment, it is copied from /resources/ to /WEB-INF/classes/.

Source Files: /sample app/articles/src/main/java/
The /sample/ folder contains the source files listed below:
• Configuration.java is populated (by the Spring framework) from the

applicationContext.xml file (described in “Configuration Files”).
• HomeController.java is the home page controller, which renders a single home

page. This controller reads the list of sample articles from the WebCenter Sites
platform using the REST API and displays them on the home page.
The sample articles consist of images and text, stored in /sample app/articles/
src/main/resources/install. The sample articles are installed in the
WebCenter Sites database by InstallController.java.

• InstallController.java registers the “Articles” application, and writes the
application’s asset model and sample assets to the database

• LayoutController.java displays the application’s layout page (layout.app)
used by the WEM UI framework. LayoutController.java is also used during the
application registration procedure.

• ProxyController.java delegates AJAX requests to the WebCenter Sites REST
servlet.

• TldUtil.java utility class contains TLD function implementations.

Installer Resources: /sample app/articles/src/main/resources/install
The /install/ folder contains the following resources, used by the
InstallController to construct the home page (Figure 8, on page 37):
• strategies.png

• strategies.txt
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Application Structure
36
• tips.png

• tips.txt

Home Page Files: /sample app/articles/src/main/webapp/images
The /images/ folder contains:
• articles.png icon (Figure 7), which represents the ‘Articles” application in the

applications bar
• In Figure 8:

- edit.png is the icon for the Edit function
- save.png is the icon for the Save function
- cancel.png is the icon for the Cancel function

Scripts: /sample app/articles/src/main/webapp/scripts
The /scripts/ folder contains the json2.js utility script, used to convert strings to
and from JSON objects.

Styles: /sample app/articles/src/main/webapp/styles
The /styles/ folder contains main.css, which specifies CSS styles used by this Web
application.

Views: /sample app/articles/src/main/WEB-INF/jsp
The /jsp/ folder contains:
• home.jsp, which is used to render the home page view of the “Articles” application

(Figure 8)
• layout.jsp, which defines the application layout

WEB-INF: /sample app/articles/src/main/WEB-INF
The /WEB-INF/ folder contains:
• articles.tld, the TLD declaration file
• spring-servlet.xml, the Spring configuration file
• web.xml, the Web application deployment descriptor
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Application Structure
37

article

WEM A

st

cel.png

e.png

st

t.png

face
tions:
Figure 7: ‘Articles’ Icon (articles.png)

Figure 8: ‘Articles’ Home Page

s.png

dmin

current site

rategies.png

tip.png

tip.txt

can

sav

rategies.txt

home.jsp

edi

Inter
func
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Making REST Calls
38
Making REST Calls
WebCenter Sites REST resources support two types of input and output formats: XML
and JSON. To get the desired return formats, you will need to set HTTP headers that
specify the MIME type application/xml or application/json.
For example, when specifying input format to be XML, set Content-Type to
application/xml. When specifying the output format, set Accept (the expected
format) to application/xml. If other output formats are specified, they will be ignored.
The default is XML, if not specified in Content-Type or Accept (for sample code, see
lines 64 and 66 on page 40).
For more detailed information about REST calls, see the following topics in this section:
• Making REST Calls from JavaScript
• Making REST Calls from Java

Making REST Calls from JavaScript
The following code (in home.jsp) performs AJAX calls to the asset REST services to
save asset data. Note that the request is actually performed to the proxy controller which
redirects the request to the destination REST service.

1 // Form the URL pointing to the asset service
2 // to the proxy controller, which will redirect this request to

the CS REST servlet.
3 var idarr = assetId.split(":");
4 var assetUrl = "${pageContext.request.contextPath}/REST/sites/

${config.csSiteName}/types/" + idarr[0] + "/assets/" +
idarr[1];

5
6 // For the data object to be posted.
7 var data =
8 {
9 "attribute" :
10 [
11 {
12 "name" : "source",
13 "data" :
14 {
15 "stringValue" : document.getElementById("source_e_" +

assetId).value
16 }
17 },
18 {

Note
We use the JSON stringify library (http://json.org/js.html) to serialize a
JavaScript object as a string. It is much more convenient to write JSON objects
instead of strings.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Making REST Calls
39
19 "name" : "cat",
20 "data" :
21 {
22 "stringValue" : document.getElementById("cat_e_" +

assetId).value
23 }
24 }
25],
26 "name" : document.getElementById("name_e_" + assetId).value,
27 "description" : document.getElementById("desc_e_" +

assetId).value,
28 // TODO: this should be removed.
29 "publist" : "${config.csSiteName}"
30 };
31 // Convert JSON data to string.
32 var strdata = JSON.stringify(data);
33
34 // Perform AJAX request.
35 var req = getXmlHttpObject();
36 req.onreadystatechange = function ()
37 {
38 if (req.readyState == 4)
39 {
40 if (req.status == 200)
41 {
42 // On successful result
43 // update the view controls with new values and switch the

mode to 'view'.
44 for (c in controls)
45 {
46 document.getElementById(controls[c] + "_v_" +

assetId).innerHTML =
47 document.getElementById(controls[c] + "_e_" +

assetId).value;
48 }
49 switchMode(assetId, false);
50 }
51 else
52 {
53 // Error happened or the session timed out,
54 // reload the current page to re-acquire the session.
55 alert("Failed to call " + assetUrl + ", " + req.status + " "

+ req.statusText);
56 window.location.reload(false);
57 }
58 }
59 };
60 // We put Content-Type and Accept headers
61 // to tell CS REST API which format we are posting
62 // and which one we are expecting to get.
63 req.open("POST", assetUrl, true);
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Constructing URLs to Serve Binary Data
40
64 req.setRequestHeader("Content-Type", "application/
json;charset=utf-8");

65 req.setRequestHeader("Content-Length", strdata.length);
66 req.setRequestHeader("Accept", "application/json");
67 req.send(strdata);
68 }

Making REST Calls from Java
The code below (in HomeController.java) calls the assets search service to list all
assets of type FW_Article. The code uses the Jersey Client library passing objects from
the rest-api-xxx.jar library provided by the WEM Framework. This way we
leverage strong typing in Java.
It is important to note that a token must be acquired from Java code by calling the
SSOAssertion.get().createToken() method. It is unnecessary to do so in
JavaScript as that side is already authenticated against WEM SSO.

// Use Jersey client to query CS assets.
Client client = Client.create();
String url = config.getRestUrl() + "/types/FW_Article/search";
WebResource res = client.resource(url);

// Construct URL and add token (for authentication purposes)
// and fields (specify which fields to retrieve back) parameters.
res = res.queryParam("fields",

URLEncoder.encode("name,description,content,cat,source", "UTF-
8"));

res = res.queryParam("ticket",
SSO.getSSOSession().getTicket(res.getURI().toString(),
config.getCsUsername(), config.getCsPassword()));

// Put Pragma: auth-redirect=false to avoid redirects to the CAS
login page.

Builder bld = res.header("Pragma", "auth-redirect=false");

// Make a network call.
AssetsBean assets = bld.get(AssetsBean.class);

Constructing URLs to Serve Binary Data
The “Articles” application leverages the Blob server in WebCenter Sites to serve BLOB
data. The following utility function could be used to construct the URL pointing to the

Note
The custom Pragma: auth-redirect=false header instructs the CAS SSO
filter not to redirect to the CAS sign-in page, but to return a 403 error instead,
when no ticket is supplied or the supplied ticket is invalid.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
41
binary data for a given attribute in a given asset, where blobUrl points to the Blob server
(http://localhost:8080/cs/BlobServer by default).
public String getBlobUrl(String assetType, String assetId, String

attrName, String contentType)
throws Exception

{
String contentTypeEnc = URLEncoder.encode(contentType,
"UTF-8");

return blobUrl + "?" +

"blobkey=id" +
"&blobnocache=true" +
"&blobcol=thumbnail" +
"&blobwhere=" + assetId +
"&blobtable=" + assetType +
"&blobheader=" + contentTypeEnc +
"&blobheadername1=content-type" +
"&blobheadervalue1=" + contentTypeEnc;

 }

An alternative way to get binary data is to load an asset using the resource /sites/
{sitename}/types/{assettype}/assets/{id}. When loaded, the asset will
contain the URL pointing to the BLOB server.

Context Object: Accessing Parameters from the
WEM Framework

The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details from the
WEM Framework about the logged-in user and site (typically, to get the current site’s
name from the UI container). The Context object also provides various utility methods
that the applications will use to share data. The Context Object can be used by applications
running in the same domain as WebCenter Sites or in different domains.

Same Domain Implementations
To initialize and use Context Object for applications in the WebCenter Sites domain:
1. Include wemcontext.js (line 1 in the sample code below; wemcontext.js is

located in <cs webapp path>/wemresources/js/WemContext.js).
2. Retrieve an instance of the WemContext object (line 3).
3. Use the methods of WemContext (lines 4 and 5).

Note
The wemcontext.html file lists the exposed methods, summarized on page 44.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
42
Sample Code for Same-Domain Implementations
1 <script src='http://<csinstalldomain>/<contextpath>/

wemresources/js/WemContext.js'></script>
2 <script type="text/javascript">
3 var wemContext = WemContext.getInstance(); // Instantiate

Context Object
4 var siteName = wemContext.getSiteName(); // Get Site Name
5 var userName = wemContext.getUserName(); // Get UserName
6 </script>

Cross-Domain Implementations
To initialize and use Context Object for cross-domain applications:
1. Copy wemxdm.js, json2.js, and hash.html (from the Misc/Samples folder)

to your application.
2. Open the sample.html file and make the following changes to perform cross-

domain calls:
a. Change the paths of wemxdm.js and json.js and hash.html to their paths in

the application (see lines 1 – 4 in the code below).
b. Change the path of wemcontext.html to its location in WebCenter Sites

(wemcontext.html is located under /wemresources/wemcontext.html.
Use the WebCenter Sites host name and context path. See line 14.)

c. In the interface declaration, specify methods that will be used in the framework
(line 15).

d. Implement those methods in the local scope and invoke the remote method
(line 30).

sample.html for Cross-Domain Calls
1 <script type="text/javascript" src="../js/wemxdm.js">

</script>
2 <script type="text/javascript">
3 // Request the use of the JSON object
4 WemXDM.ImportJSON("../js/json2.js");
5 var remote;
6
7 window.onload = function() {
8 // When the window is finished loading start setting up

the interface
9 remote = WemXDM.Interface(/** The channel configuration */
10 {
11 // Register the url to hash.html.
12 local: "../hash.html",
13 // Register the url to the remote interface
14 remote: "http://localhost:8080/cs/wemresources/

wemcontext.html"
15 }, /** The interface configuration */
16 {
17 remote: {
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
43
18 getSiteName :{},
19 ...
20
21 }
22 },/**The onReady handler*/ function(){
23 // This function will be loaded as soon as the page is

loaded
24 populateAttributes();
25 });
26 }
27 </script>
28
29 <script type="text/javascript">
30 /** Define local methods for accessing remote methods

*/
31 function getSiteName(){
32 remote.getSiteName(function(result){
33 alert("result = " + result);
34 });
35 }
36 ...
37 </script>
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
44
Methods Available in Context Object

Return Type Method Name and Description

Object getAttribute(attributename)

Returns attribute value for the given attribute name.

Object getAttributeNames()

Returns all the attribute names.

Object getCookie(name)

Returns cookie value for the given name. Has all restrictions of the
normal browser cookie.

Object getCookies()

Returns all the cookies.

Object getLocale()

Returns locale.

Object getSiteId()

Returns the site id.

Object getSiteName()

Returns the site name.

Object getUser()

Returns user object.

Object getUserName()

Returns user name.

void removeCookie(name, properties)

Removes cookie.

void setAttribute(attributename, attributevalue)

Sets attribute. These attributes can be accessed in other applications.

void setCookie(name,value,expiredays,properties)

Sets the cookie.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Registration Code
45
Registration Code
Registration exposes applications in the WEM Framework, as explained on page 20.
Registering an application creates an asset of type FW_Application and an asset of type
FW_View for each view associated with the application. The asset types are enabled on
AdminSite. Their attributes are defined in the Oracle WebCenter Sites: Web Experience
Management Framework REST API Bean Reference. Programmatic registration is the
preferred method. (For an example of manual registration, see Appendix A.)
This section contains the following topics:
• Registering Applications with an iframe View
• Registering Applications with JavaScript and HTML Views

Registering Applications with an iframe View
The section uses code from the “Articles” sample application to illustrate the registration
process. “Articles” has a single view of type iframe. The same steps apply to JavaScript
and HTML views.

To register an application

1. Create or get an icon to represent your application. (The icon will be displayed in the
applications bar.)
(The “Articles” sample application uses the articles.png image file located in:
/sample app/articles/src/main/webapp/images/)

2. Create a file that specifies the layout of the application in HTML, i.e., for each view,
create a placeholder element to hold the content rendered by the view. Applications
and views are related as shown in Figure 9, on page 46.
For example, layout.jsp for the “Articles” sample application contains the
following line:

<div id="articles" style="float:left;height:100%;width:100%"
class="wemholder"></div>

The view’s content will be rendered within the placeholder element when the
application is displayed (layout.app renders the application’s layout; home.app
renders the view).

Note
When creating the layout file, specify a unique id for the placeholder
element. You will specify the same id for the parentnode attribute
when coding the view object. Use class=”wemholder” for the
placeholder elements.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Registration Code
46
Figure 9: Applications and Views

The relationship between applications and views is many-to-many (Figure 9). One
application can have multiple views and each view can be used by many applications.
Only registered views can be shared (through their asset IDs). If the asset ID is
omitted, the view will be created within the context of its application. In the basic
case, an application has only one view associated with it.

3. Invoke the PUT wem/applications/{applicationid} REST service and specify
your application bean. Populate the bean with the view asset and application asset.
For an iframe view, use the code of the “Articles” sample application, i.e.,
InstallController.java (locate the comment lines // Create a new view
object and // Create a new application object). Set the layouturl
attribute to specify the URL of the application’s layout page.
In the “Articles” application, the layouturl attribute points to the URL of
layout.app (implemented by LayoutController.java):

app.setLayouturl(config.getArticlesUrl() + "/layout.app");

You can test the results of your registration process by logging in to the WEM Admin
interface as a general administrator and selecting Apps on the menu bar. Your application
should be listed on that page.

Registering Applications with JavaScript and HTML Views
For applications that use HTML and JavaScript views, follow the steps in the previous
section, but use the sample code and attributes listed below:
• JavaScript View
• HTML View

Application 1 Application 2

View A View B
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Registration Code
47
JavaScript View

Sample code:
 window.onload = function () {
 if (GBrowserIsCompatible()) {
 var map = new

GMap2(document.getElementById("map_canvas"));
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 map.setUIToDefault();
 }
 }

• Rendering the JavaScript view from a source URL
Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 45)
- viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript

into the placeholder element.
- sourceurl: Path of the .js file, which provides content for the view. For

example: http://myhost.com:8080/js/drawTree.js
• Rendering the JavaScript view from source code

Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 45)
- viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript

into the placeholder element
- javascriptcontent: JavaScript code (sample provided above. The code must

not contain <script> tags.)

Note
JavaScript specified in the view will be rendered (executed) when the application
is rendered. Make sure that the JavaScript does not conflict with other views.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 4. Developing Applications

 Registration Code
48
HTML View

Sample code:
<object width="480" height="385">
 <param name="movie" value="http://www.localhost:8080/jspx/

flash_slider_main.swf"></param>
 <param name="allowFullScreen" value="true"></param>
 <embed src=" http://www.localhost:8080/jspx/

flash_slider_main.swf"
 type="application/x-shockwave-flash"

allowscriptaccess="always" allowfullscreen="true"
 width="480" height="385">
 </embed>
</object>

• Rendering the HTML view from a source URL
Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 45)
- viewtype: fw.wem.framework.IncludeRenderer, which renders

JavaScript into the placeholder element
- sourceurl: Path to the HTML file that provides content for the view. For

example: http://myhost.com:8080/js/drawTree.jsp
• Rendering the HTML view from source code

Set the following attributes:
- view: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 45)
- viewtype: fw.wem.framework.IncludeRenderer, which renders

JavaScript into the placeholder element
- includecontent: HTML content (sample provided above. The code must not

contain <html> or <body> tags.)

Note
HTML specified in the view will be rendered (executed) when the application is
rendered.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

49
Chapter 5

Developing Custom REST Resources
• ‘Recommendations’ Sample Application
• Creating REST Resources
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 5. Developing Custom REST Resources

 ‘Recommendations’ Sample Application
50
‘Recommendations’ Sample Application
• Overview
• Building and Deploying the Application
• Testing the Application

Overview
The “Recommendations” sample application demonstrates how to create REST resources
for WebCenter Sites and Satellite Server. The application registers a new REST resource
sample/recommendations/<id> with GET and POST operations, which allow for
retrieval and modification of static list recommendations. The application also
demonstrates how it is possible to leverage the Satellite Server caching system.

Building and Deploying the Application
1. The “Recommendations” sample application is located in the Misc/Samples folder

under your WebCenter Sites installation directory. Navigate to recommendations
and edit the build.properties file. Specify the correct paths for
cs.webapp.dir and ss.webapp.dir properties.

2. Run Apache ant while in the recommendations folder. This will build and deploy
your sample application.

3. Launch the catalogmover application. Use the Server > Connect menu to connect
to WebCenter Sites. Go to Catalog > Auto Import Catalog(s) and select
src\main\schema\elements.zip file. Append xceladmin, xceleditor when
specifying the list of ACLs.

4. Go to the WebCenter Sites web application folder. Edit the WEB-INF/classes/
custom/RestResource.xml file. Uncomment recommendationService,
recommendationConfig and resourceConfigs beans.

5. Go to the Satellite Server web application folder. Edit WEB-INF/classes/custom/
RestResource.xml file. Uncomment recommendationService,
recommendationConfig, and resourceConfigs beans.

6. Restart both WebCenter Sites and Satellite Server.

Testing the Application
Use the existing static list recommendation id (or create a new recommendation) for the
URL http://<hostname>:<port>/<contextpath>/REST/sample/
recommendations/<recommendationid>. Use the same URL for both WebCenter
Sites and Satellite Server installations. For example, use http://localhost:8080/
cs/REST/sample/recommendations/1266874492697. See the XML response for
both WebCenter Sites and Satellite Server.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 5. Developing Custom REST Resources

 Creating REST Resources
51
Creating REST Resources
• Application Structure
• Steps for Implementing Custom REST Resources

Application Structure
The “Recommendations” sample application was created to guide you through the process
of creating your own REST resources.

Figure 10: “Recommendations” Sample Application

• Schema files: src/main/schema
- elements.zip contains a sample element, which is used by Satellite Server for

caching purposes.
- jaxb.binding is a customization for the default JAXB bindings used during

the bean generation process.
- recommendation.xsd is an XML schema for the RecommendationService

beans.
• Java source files: src/main/java/ ... /sample

- RecommendationResource contains the REST resource implementation. It is
used on both WebCenter Sites and Satellite Server.

- RecommendationService is an interface that provides the functionality for the
RecommendationResource class. It is implemented differently, depending on
where the resource is hosted: locally (on WebCenter Sites) or remotely (on
Satellite Server).

- beans/* classes are generated using Java xjc compiler. They are pre-packaged
with the application. If you want to regenerate beans (i.e., when changing the
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 5. Developing Custom REST Resources

 Creating REST Resources
52
recommendation.xsd file) you can run “generate” ant’s task from
build.xml.

- LocalRecommendationService is a local (WebCenter Sites) implementation
for the RecommendationService interface.

- RemoteRecommendationService is a remote (Satellite Server)
implementation for the RecommendationService interface.

Steps for Implementing Custom REST Resources
1. Write your XSD file describing your REST service (recommendations.xsd file).
2. Generate beans using the JAXB xjc utility (“generate” ant’s task).
3. Create your REST interface, which will be implemented differently for WebCenter

Sites and Satellite Server.
4. Implement the REST interface by extending the following classes:

com.fatwire.rest.BaseLocalService
com.fatwire.rest.BaseRemoteService

5. This step is optional in case you decide to leverage Satellite Server caching:
Create elements on the WebCenter Sites side, which load the same assets as the local
implementation does.

6. Create your REST resource class by extending the com.fatwire.rest.
BaseResource class.

7. Register your REST service and configuration in WEB-INF/classes/custom/
RestResources.xml file on both WebCenter Sites and Satellite Server sides.
The custom/RestResources.xml file contains the following components:
- The only mandatory bean is the bean with resourceConfigs id. The

resourceConfigs property contains references to all REST configurations
used.

- Resource configurations must be of type
com.fatwire.rest.ResourceConfig. Typically only one instance of this
class is registered (multiple services can be registered per configuration).

- The resourceClasses property contains the list of all resources used.
- beanPackage contains the Java package name specified for the output beans

when running the xjc utility.
- schemaLocation is the xsi:schemaLocation attribute to be put in all output

XML files produced by your REST service.

Note
If custom resourceConfigs is uncommented, then embeddedConfig
bean should be referenced. Otherwise, the default REST resource, which
is provided with the WEM installation will not be registered.

Note
For multiple services, create a new configuration for each disjoint group
of your REST services, usually identified by separate XSD files.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

53
Chapter 6

Single Sign-On for Production Sites
• SSO Sample Application
• Deploying the SSO Sample Application
• Application Structure
• Implementing Single Sign-On
• Implementing Single Sign-Out
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 6. Single Sign-On for Production Sites

 SSO Sample Application
54

sing
links
SSO Sample Application
Our SSO sample application is driven by a delivery use case. Given that out-of-the-box
CAS cannot be used to secure applications on production sites, we provide a simple
example of how to enable single sign-on and sign-out for applications on live sites.

Deploying the SSO Sample Application
1. Unpack the wem-sso-api-cas-sample.war file (to the /sso-sample folder, for

example). The application is located in the WebCenter Sites Misc/Samples/WEM
Samples/ WEM Sample applications/ directory.

2. Modify the applicationContext.xml file in the WEB-INF folder by setting the
following properties:
- casUrl: Point to the CAS server base path:

http://localhost:8080/cas

- casLoginPath: Include the login form template hosted by the SSO sample
application:
/login?wemLoginTemplate=http%3A%2F%2Flocalhost%3A9080%2Fsso-

cas-sample%2Ftemplate.html

3. Deploy the modified SSO sample application to your application server.
4. Access the application.
The SSO sample application consists of the following pages:
• Protected area – a page that is protected by the WEM SSO filter. This page contains

two single sign-out links (Figure 11).

Figure 11: Protected page with single sign-out links

The first link (single sign-out with redirect) is an HTML link that performs single
sign-out on the CAS side and redirects the user back to the home page. The second
link (single sign-out without redirect) is also an HTML link that performs single sign-
out on the CAS side, but without leaving or reloading the current page.

• Public area – a page that is excluded from the protection filter.
• Public area with login form – this page is excluded from the protection filter, but has

a login form, which allows performing a sign-in operation without leaving or
reloading the current page.

le sign-out
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 6. Single Sign-On for Production Sites

 Application Structure
55
Figure 12: Public area with “Sign in” link

Application Structure
The SSO sample application provides you with the basic code for utilizing single sign-on
and sign-out functionality to protect applications on production sites. The following
components provide access to the SSO sample application:
• index.jsp – starting page. This page contains links to the pages described as

Protected area, Public area, and Public area with login form pages (see
“Deploying the SSO Sample Application,” on page 54).

• template.html – used to provide a custom sign-in form for CAS. Its path is
referenced in the wemLoginTemplate parameter in casLoginPath in the
applicationContext.xml file.

Configuration Files: /sso-sample/WEB-INF
WEB-INF contains the following configuration files:
• applicationContext.xml – Spring web application configuration file, which

configures the SSO subsystem.
• web.xml – web application deployment descriptor.

Protected Files: /sso-sample/protected/jsp
Files in this area are protected by the SSO filter. By default, the following files are
included in this folder:
• protected.jsp – A page protected by the SSO filter. This page hosts two links for

performing single sign-out. The first link leads to the CAS sign-out page with a
redirect to the application’s home page when sign-out is complete. The second link
embeds an iframe into this page, which calls the CAS sign-out page with a redirect to
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-On
56
the signoutCallback.jsp page. The protected.jsp page also prints out all
attributes from the Assertion object, which describes the current logged in user.

• protected/jsp/protectedSection.jsp – Page that is referenced from the
public.jsp page, when the Sign in link is clicked in an embedded iframe. As this
page is protected, a login screen is presented in the embedded iframe.

Public Files: /sso-sample/public/jsp
Files in this area are not protected by the SSO filter. By default, the following sample files
are included in the /public/jsp/ folder:
• public.jsp – this page not protected by the CAS filter
• publicWithAuth.jsp – this page displays the Sign in link. Clicking the link

embeds an iframe into the publicWithAuth.jsp with the iframe pointing to the
protectedSection.jsp page. As the page is protected, a login screen is presented
in the embedded iframe.

• signoutCallback.jsp – this page is called from the protected.jsp page upon
sign-out completion when using iframe.

Implementing Single Sign-On
Implementing single sign-on on a web site amounts to implementing a sign-in form. The
sign-in form can be presented to site visitors in one of two ways:
• The sign-in form is presented when the visitor tries to access a protected page. This is

the default sign-in implementation. This sign in form could be either a default sign-in
form shipped with CAS or a custom form provided by an application.

• The sign-in form is embedded into a public page, and the sign-in function is
performed without the user leaving the current page. This behavior can be
implemented by embedding the iframe that points to a protected page. As the page is
being protected, the sign-in form is presented to the visitor.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-Out
57
Implementing Single Sign-Out
When implementing single sign-out on a web page, you can do one of the following:
• Retrieve the “single sign-out” URL by invoking the following method:

getSignoutUrl() or getSignoutUrl(String callbackUrl) method of
com.fatwire.wem.sso.SSO.getSSOSession() object.
After performing single sign-out, CAS can optionally redirect to the visitor-supplied
URL, which is set in the callbackUrl parameter.

• Use an iframe-embedding technique if the sign-out is to be performed without leaving
the current page. This technique involves embedding an iframe with the single sign-
out URL as source. When the iframe is loaded, the sign-out URL is called (this is done
primarily to avoid cross-domain restrictions in browsers).
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-Out
58
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

59
Chapter 7

Using REST Resources
• Authentication for REST Resources
• Configuring CAS
• REST Authorization
• Managing Assets Over REST
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
60
Authentication for REST Resources
The WEM Framework uses the SSO mechanism built on top of CAS
(http://www.jasig.org/cas) for authentication purposes. The system behaves
differently when the REST API is used from a browser or programmatically.
When accessing the REST API from a browser, the user is redirected to the CAS login
page and, upon successful login, back to the original location with the ticket parameter,
which is validated to establish the user’s identity. When accessing the REST API
programmatically, the developer must supply either the ticket or multiticket
parameter.
Both the ticket and multiticket parameters could be acquired by using either the
Oracle SSO API if making calls from Java, or simply by using the HTTP protocol if
making calls from any other language. The difference between ticket and multicket
is that a ticket is acquired per each REST resource and can be used only once (as the name
implies, think of a train or a theater ticket, which is valid for one ride or one play), while a
multiticket could be used multiple times for any resource. Both the ticket and
multiticket parameters are limited in time, but the typical usage pattern differs. As a
ticket is acquired per each call, there is no need to worry about its expiration time.
However, reusing the same multiticket will eventually lead to its expiration and getting an
HTTP 403 error. The application must be able to recognize such behavior and fall back to
the multiticket re-acquisition procedure in such a case. The decision to use either ticket
or multiticket is up to the application developer.

Acquiring Tickets from Java Code
The Oracle SSO API is implemented in an authentication provider-independent manner.
Users will not be able to register their own SSO authentication providers. Support for a
new authentication provider can be implemented only by Oracle. Switching between
providers involves only changing the SSO configuration files.
All SSO calls originate at the SSO front-end class SSO. It is used to get the SSOSession
object. SSOSession is acquired per each SSO configuration. It is a single configuration
in the web application case, which is loaded using the Spring Web application loader or a
configuration loaded from a configuration file in the case of a standalone application.

Web Application
SSO.getSession().getTicket(String service, String username, String

password)
SSO.getSession().getMultiTicket(String username, String password)

Standalone Application
SSO.getSession(String configName).getTicket(String service, String

username, String password)
SSO.getSession(String configName).getMultiTicket(String username,

String password)
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
61
Acquiring Tickets from Other Programming Languages (Over
HTTP)

The CAS REST API is used to acquire a ticket and/or multiticket in the delivery
environment. Two HTTP POST calls should be performed to acquire either ticket or
multiticket. The difference between ticket and multiticket is that the service parameter
is “ * “ for multiticket, while it is an actual REST resource you are trying to access for the
ticket parameter.
The example below demonstrates the calls to be made to the CAS server to get a ticket to
the http://localhost:8080/cs/REST/sites service with fwadmin/xceladmin
credentials:
1. Call to get Ticket Granting Ticket

Request
POST /cas/v1/tickets HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 35

username=fwadmin&password=xceladmin

Response
HTTP/1.1 201 Created
Location: http://localhost:8080/cas/v1/tickets/TGT-1-

ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas
Content-Length: 441
...

2. Call to get a Service ticket
Request
POST /cas/v1/tickets/TGT-1-

ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas
HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 57

service=http%3A%2F%2Flocalhost%3A8080%2Fcs%2FREST%2Fsites

Response
HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 29

ST-1-7xsHEMYR9ZmKdyNuBz6W-cas

The protocol is fairly straightforward. First a call to get Ticket Granting Ticket (TGT) is
made by passing the username and password parameter in application/x-www-form-
urlencoded POST request. The Response will contain the Location HTTP header,
which should be used to issue a second application/x-www-form-urlencoded
POST request with service parameter. The response body will contain the actual ticket.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
62
Using Tickets and Multitickets
To use the generated ticket/multiticket, supply the ticket/multiticket URL query
parameter. For example:

http://localhost:8080/cs/REST/sites?ticket=ST-1-
7xsHEMYR9ZmKdyNuBz6W-cas

http://localhost:8080/cs/REST/sites?multiticket=ST-2-
Bhen7VnZBERxXcepJZaV-cas

1. The application performs a call to get the ticket/multiticket.
- Input: service, username, password
- Output: ticket /multiticket

2. The application performs call to Remote Satellite Server to get the resource.
- Input: ticket, resource input data
- Output: resource output data

3. Remote Satellite Server performs a call to validate the resulting ‘assertion’. The
assertion contains user information. Satellite Server also maintains a time-based cache
of multitickets, so that subsequent calls do not incur the cost of validation.
- Input: ticket/multiticket
- Output: assertion

4. This step is optional. If the proxyTickets parameter in the SSOConfig.xml file
parameter is set to true on the Satellite Server side, it also proxies the ticket.
- Input: ticket
- Output: proxied ticket

5. Remote Satellite Server performs a call to WebCenter Sites.
- Input: assertion (in serialized form), resource input data
- Output: resource output data
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
63
6. This step is optional. If security is enabled on the WebCenter Sites side, it performs a
call to validate the ticket.
- Input: ticket/multiticket
- Output: assertion

By default the communication channel between WebCenter Sites and Remote Satellite
Server is not trusted. The proxyTickets parameter in the SSOConfig.xml file on
Remote Satellite Server is set to true, which forces Remote Satellite Server to proxy the
ticket supplied by the application that is being accessed.
For optimal performance, the system can be configured for authentication by Satellite
Server alone. The security check should be disabled on the WebCenter Sites side by
excluding the REST and WebCenter Sites elements used by the REST API from the SSO
filter; the proxyTickets parameter in the SSOConfig.xml file on Remote Satellite
Server should be set to false. In this mode it is possible to leverage multitickets. Note
that the WebCenter Sites installation should be hosted inside a private network in this
mode, and the communication channel between WebCenter Sites and Remote Satellite
Server should be trusted.

SSO Configuration for Standalone Applications
The single sign-on module relies on the Spring configuration. The only required bean is
ssoprovider, which references the ssoconfig bean.

Beans and Properties

id=”ssolistener”,
class=”com.fatwire.wem.sso.cas.listener.CASListener”

Property Description

No properties for this bean.

id=”ssofilter”,
class=”com.fatwire.wem.sso.cas.filter.CASFilter”

Property Description

config Required. SSO configuration reference.

Sample value: ssoconfig

provider Required. SSO provider reference.

Sample value: ssoprovider
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
64

id=”provider”,
class=”com.fatwire.wem.sso.cas.CASProvider”

Property Description

config SSO configuration reference.

Sample value: ssoconfig

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig”

Property Description

applicationProxy
CallbackPath

Proxy callback path, relative to casUrl.
Default value: /proxycallback

authRedirect Use this property to specify the default behavior on unauthenticated
access to protected pages. true redirects the user to the CAS login
page; false displays a 403 error if users are not unauthenticated. This
setting could be overridden by the Pragma: auth-redirect HTTP
header.

Default value: true

casLoginPath Login page path, relative to casUrl.

Can accept additional query parameters:
• wemLoginTemplate, points to the page containing the HTML

login template to be used instead of the default template. The
template must have two input fields: username and password.
Note, that the HTML <form> tag should not be used in the
template.

• wemLoginCss, points to the CSS page containing style
declarations used on the login form.

Default value: /login

casRESTPath CAS REST servlet path, relative to casUrl.
Default value: /v1

casSignoutPath Logout page path, relative to casUrl.

Default value: /logout

casUrl Required property. CAS URL prefix.

Example: http://localhost:8080/cas

gateway If true, the request to protected pages will be redirected to CAS. If a
ticket-granting cookie is present, then the user will be implicitly
authenticated; if not, the user will be redirected back to the original
location. This is used primarily to allow implicit authentication if the
user is already logged in to another application.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
65
gateway (continued) Be careful when enabling the redirect behavior to occur by default.
Make sure that the clients are able to follow the redirects. Otherwise,
gateway=false URL query parameter should be used to override the
default behavior. For example, while processing wemLoginTemplate
and wemLoginCss parameters, CAS does not follow redirects; you
will have to prepend gateway=false to URLs when turning this
setting on.

Default value: false

multiticketTimeout Multiticket timeout in msecs.
Default value: 600000

protectedMapping
Excludes

List of mappings that should be excluded. Regular expressions are
allowed.
Allowed value: See protectedMappingIncludes

protectedMapping
Includes

List of protected mappings. Regular expressions are allowed.

Allowed value: path?[name=value,#]

path is a URL path part. It may contain asterisks (* and **). The
single asterisk * symbolizes any character sequence up to the forward
slash character (/), while ** applies to the entire path.

Example

/folder1/folder2 matches against /folder1/*, while /
folder1/folder2/folder3 does not.

/folder1/folder2 matches against /folder1/**, as well as /
folder1/folder2/folder3.

?[..] block is optional. Query parameters can be specified inside the
block. Parameters are comma separated. The special character # means
that the specified parameters are a subset of those from the request;
omitting # requires the request parameters to exactly match the
specified parameters.

Parameters may contain only name. The match will be done against
name only, or against name=value (i.e., both name and value). A
parameter can take multiple values. In this case, the match test will
pass if any of the specified parameter values match the corresponding
parameter value from the request.

Example

/file1[size=1|2] matches against /file1?size=2,
 but not against /file1?size=2&author=admin

/file1[size=1|2,name=file1,#] matches against
/file1?size=2 and /file1?size=2&author=admin,
 but not against /file1?size=3

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig” (continued)

Property Description
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Authentication for REST Resources
66
Query Parameters Processed by SSO Filter

protectedMapping
Includes (continued)

To make custom REST resources in an application available via
remote Satellite Server, specify the following value:
/ContentServer?[pagename=rest/<path toCSElement>,#]

Example
/ContentServer?[pagename=rest/sample/

recommendation,#] for custom REST resources in the
“Recommendation” sample application (Chapter 5).

proxyTickets Specifies whether to proxy tickets.
Set this property to false for the last server in the call chain for
optimal performance.

Set this property to true if you need to call another CAS-protected
application from this application on behalf of the currently logged-in
user. This results in the ability to call the following method:
SSO.getSSOSession().getTicket(String service, String

username, String password)

Default value: true

useMultiTickets Specifies whether to use multitickets.
Default value: true

Query Parameters Processed by SSO Filter

Property Name Description

ticket Used to verify user identity. Can be used only during some limited period
of time for one resource and only once.

Type: <query parameter>

Value: <random string>

multiticket Used to verify user identity. Can be used only during some limited period,
multiple times for any resource.

Type: <query parameter>

Value: <random string>

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig” (continued)

Property Description
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Configuring CAS
67
Configuring CAS
Information about CAS clustering can be found in the following sources:
• For information about CAS architecture, use the following link:

http://www.jasig.org/cas/about

• For information about configuring CAS clustering during the WebCenter Sites
installation, see the WebCenter Sites installation guides.

• For information about configuring CAS with LDAP providers, use the following link:
http://www.jasig.org/cas/server-deployment/authentication-

handler

gateway If this property is set to true, the request for public pages will be
redirected to CAS. If the ticket granting cookie is present, then the user will
be implicitly authenticated; if not, the user will be redirected back to the
original location. This is primarily to allow implicit authentication if the
user is already logged in to another application.

Type: <query parameter>

Value: true | false

auth-redirect Used to specify the default behavior on unauthenticated access to protected
pages. If this property is set to true, the user will be redirected to the CAS
login page; if false, a 403 error will be presented.

Type: <Pragma HTTP header>

Value: true | false

Query Parameters Processed by SSO Filter (continued)

Property Name Description
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 REST Authorization
68
REST Authorization
This section is for developers who are interested in administrators’ authorization
processes. REST authorization is the process of granting privileges to perform REST
operations on applications’ resources (which map to objects in WebCenter Sites). REST
authorization uses the “deny everything by default” model. If a privilege is not explicitly
granted to a particular group, that privilege is denied.

Security Model
The WEM security model is based on objects, groups, and actions. Security must be
configured per object type in the WebCenter Sites Admin interface:

• Object is a generic term that refers to any entity in the WEM Framework such as a
site, a user, or an asset. Protected objects are of the following types:

• Security groups are used to gather users for the purpose of managing their
permissions (to operate on objects) simultaneously.

• An action is a security privilege: LIST,READ, UPDATE, CREATE, DELETE.
LIST provides GET permission on services that list objects (such as /types), whereas
READ provides GET permission on services that retrieve individual objects in full
detail (such as /types/{assettype}).
Privileges are assigned to groups to operate on allowed objects. Some objects, such as
ACLs, are read-only (they can be created directly in WebCenter Sites, but not over
REST).

A security configuration is an array, such as shown above, which specifies:
• The protected object type and object(s)

- Asset Type - Site - User Locale
- Asset - Role - ACL
- Index - User - Application

Objects of a given type
are accessible to a user
only if the user
belongs to at least one group
with privileges to
perform specified actions
on objects of the
given type.

The Security Configuration
node is accessible from the
Admin tab in the WebCenter
Sites Admin interface.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 REST Authorization
69
• Groups that are able to access the objects
• Actions that groups (and their members) can perform on the objects
Possible security configurations are summarized in the Oracle WebCenter Sites
Administrator’s Guide for the Web Experience Management Framework.

Using the Security Model to Access REST Resources
Object types and objects in WebCenter Sites map to REST resources in the WEM
Framework. For example, the Asset Type object maps to:
• <BaseURI>/types/ resource (which lists all asset types in the system)
• <BaseURI>/types/<assettype> resource (which displays information about the

selected asset type), and so on.
Actions in WebCenter Sites map to REST methods in the WEM Framework. For example,
granting the READ privilege to group Editor to operate on asset type Content_C gives
users in the Editor group permission to use GET and HEAD methods on the REST
resource
/types/Content_C.
• The LIST action allows group members to use GET methods on REST resources.
• The READ action allows group members to use GET and HEAD methods on REST

resources.
• The UPDATE action allows group members to use POST methods on REST resources.
• The CREATE action allows group members to use PUT methods on REST resources.
• The DELETE action allows group members to use DELETE methods on REST

resources.
For comprehensive information, see the Oracle WebCenter Sites: Web Experience
Management Framework REST API Resource Reference.

Configuring REST Security
Procedures for configuring REST security are available in the Oracle WebCenter Sites
Administrator’s Guide for the Web Experience Management Framework.

Privilege Resolution Algorithm
When configuring a security privilege, you can specify that the privilege applies to all
objects of a certain type or a single object of a certain type. For example, granting the
privilege to UPDATE (POST) any site allows users in the group to modify the details of all
sites in the WEM Framework. Granting the privilege to UPDATE (POST) the FirstSiteII
sample site allows users in the group to modify this site’s details in WEM.
The Asset object type requires you to specify the site to which the security setting
applies, as assets are always accessed from a particular site. The AssetType object can be
extended by specifying a subtype, which is used to make the security configuration more
granular. For example, setting the DELETE privilege on asset type Content_C in allows a
DELETE request to be performed on the REST resource /types/Content_C (i.e., to
delete the Content_C asset type from the system).
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 7. Using REST Resources

 Managing Assets Over REST
70
Because privileges can be granted only to groups, a user’s total privileges are not obvious
until they are computed across all of the user’s groups. The WEM Framework provides a
privilege resolution algorithm. Its basic steps are listed below:
1. REST finds the groups in which the user has membership.
2. REST determines which groups can perform which REST operations on which REST

resources. If site or subtype is specified, each is taken into account.
3. REST compares the results of steps 1 and 2. If at least one of the groups from step 1 is

in the list of groups from step 2, then access is granted. Otherwise, access is denied.

Managing Assets Over REST
Sample code illustrating management of assets via the WebCenter Sites REST API is
available in your WebCenter Sites installation directory, in the following paths:

Misc/Samples/WEM Samples/REST API samples/Basic Assets/com/
fatwire/rest/samples/basic/

Misc/Samples/WEM Samples/REST API samples/Basic Assets/com/
fatwire/rest/samples/flex/

The subfolders basic and flex each contain the following set of files:
• CreateAsset.java

• DeleteAsset.java

• ReadAsset.java

• UpdateAsset.java.
The code is richly documented with step-by-step instructions. Examples of basic asset
management use the HelloAssetWorld sample site. Examples of flex asset management
use the FirstSite II sample site. All information regarding the required asset types and
assets can be found in the java files.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

71
Chapter 8

Customizable Single Sign-On Facility
• Customizing Login Behavior for the WEM Framework
• Configuring and Deploying Custom SSO Behavior
• Running the CSSO Sample Implementation
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Customizing Login Behavior for the WEM Framework
72
Customizing Login Behavior for the WEM
Framework

WEM Framework authentication, which is built over the CAS framework, includes a
customization layer called the Oracle Customizable Single Sign-On facility, also called
CSSO. The CSSO facility contains authentication extensions that you can use to create a
custom SSO solution, without directly modifying the CAS configuration. Instead, the
Spring configuration directs the injection of these extensions into the CAS configuration
to implement the desired login behavior.
The CSSO facility provides pre-packaged classes that can be extended to implement a
custom SSO solution. It also provides a default Spring configuration file which identifies
the classes to Spring for instantiation. Customizing WEM SSO enables you to use a
different login screen, require credentials other than a username/password pair, or use an
external authentication authority to authenticate WebCenter Sites users. A custom SSO
implementation consists of:
• Three Java classes (which extend the default classes)
• A configuration file that exposes the new classes to the framework
The default CSSO classes defer all credential discovery and authentication to the standard
WEM SSO implementation. These classes are instantiated by the
customdefaultWEMSSObean.xml Spring configuration file. Extending the default
CSSO classes enables you to define methods which specify the behavior of your custom
SSO solution. For example you can create a different authentication for browser access,
REST, and/or thick client authentication. When you extend the default CSSO classes, you
must create a custom Spring configuration file that identifies the custom classes and
exposes them to the WEM Framework.
The CSSO facility provides a complete SSO sample (including Java source files) that
replaces the default WEM login behavior with custom login behavior. The sample SSO
implementation demonstrates two different types of authentication – username/password
pair (with an additional domain field) and external user identifier. (The external identifier
maps a user authenticated by an external authentication authority to a WebCenter Sites
system user.)
The rest of this chapter provides information about the default components of the CSSO
facility and instructions on implementing a custom SSO solution. If you wish to see an
example of a custom SSO solution, the end of this chapter provides information about the
CSSO sample, and instructions for running the sample.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Components of the Default CSSO Implementation
73
Components of the Default CSSO Implementation
This section provides information about the default components provided by the CSSO
facility. These components are your starting point for customizing your own SSO
implementation.
The com.fatwire.wem.sso.cas.custom.basis package (shown in Table 1)
contains the default classes that are included in the CSSO facility. The default Spring
configuration file (customdefaultWEMSSObeans.xml) instantiates these classes to
implement the default WEM login behavior.

Note
The CSSO facility provides a complete SSO sample that replaces the default
WEM login behavior with custom login behavior. For more information, see
“Running the CSSO Sample Implementation,” on page 83.

Table 1: com.fatwire.wem.sso.cas.custom.basis

Class Description

CustomAuthenticator.java Implements the CustomAuthentication
interface. This class controls the behavior of the
login sequence and handles authentication
requests. By default, it returns to the WEM
Framework to complete the authentication by
displaying the standard WEM login form.
For information about extending this class, see
“Extending the Default CSSO Classes,” on
page 75.

CustomConfiguration.java Provides access to the properties that are set in
the default Spring configuration file. You can
extend this class when additional properties are
required for a custom SSO implementation.
For information about extending this class, see
“Extending the Default CSSO Classes,” on
page 75.

CustomCredentials.java Provides a standard set of credential values for
custom authentication. You can extend this class
when additional attributes are needed for a
custom SSO implementation.
For information about extending this class, see
“Extending the Default CSSO Classes,” on
page 75.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
74
The com.fatwire.wem.sso.cas.custom.interfaces package (shown in Table 2)
defines the custom authentication interfaces.

Configuring and Deploying Custom SSO Behavior
To configure and deploy custom SSO behavior you must first extend the default classes
that are included in the CSSO facility. You then identify the new Java classes to Spring by
creating a custom Spring configuration file which instantiates the classes, exposing them
to the CSSO framework. These are your basic steps:
1. Extend the default CSSO classes – CustomAuthenticator.java,

CustomConfiguration.java, and CustomCredentials.java (contained
within the com.fatwire.wem.sso.cas.custom.basis package):
a. Create new Java classes that extend the default CSSO classes.
b. Package the Java classes you created in a jar file, then place the jar file in the

classpath of the CAS servlet (in cas/WEB-INF/lib).
For more information, see “Extending the Default CSSO Classes,” on page 75.

2. Identify your new Java classes to Spring for instantiation:
a. Create a Spring configuration file that contains all the custom class names and

properties for your SSO implementation.
b. Place the custom Spring configuration file in the spring-configuration

folder (in cas/WEB-INF/).
c. Remove the .xml extension from the default Spring configuration file

(customDefaultWEMSSObeans.xml).
For more information, see “Identifying Your Java Classes to Spring for Instantiation,”
on page 77.

3. If an external authentication authority is used to authenticate a user, map the external
user identifier to the appropriate WebCenter Sites system user name, unique identifier,
and ACLs. For instructions, see “Mapping External User Identifiers to WebCenter
Sites Credentials,” on page 80.

4. Restart the CAS web application. For more information, see “Restarting the CAS Web
Application,” on page 82.

The rest of this section provides detailed information for the steps outlined above.

Table 2: com.fatwire.wem.sso.cas.custom.interfaces

Class Description

CustomAuthentication.java Defines the interfaces that must be implemented
by any custom SSO solution.
For more information, see “Extending the
Default CSSO Classes,” on page 75.

CustomRestCodec.java Defines the interfaces that must be implemented
to encode and decode a custom REST
authentication token that is not username/
password based.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
75
Extending the Default CSSO Classes
An SSO implementation is a set of called methods that are specified in the default CSSO
classes CustomAuthenticator.java, CustomConfiguration.java, and
CustomCredentials.java. To replace the default WEM login behavior with custom
behavior, you must create new Java classes for it that extend the default CSSO classes. By
extending the CSSO classes, the methods specified in the default CSSO classes are
replaced by the methods specified in the custom classes for the functionality you wish to
change.
The three classes (located in the com.fatwire.wem.sso.cas.custom.basis
package) that must be extended to implement a custom SSO solution are:
• CustomConfiguration.java – Provides access to the externally defined

properties that are specified in the default Spring configuration file. By default, this
class exists only as a placeholder for injecting properties into the SSO configuration
from the Spring configuration file. Extend this class if you wish to include additional
properties, such as URLs or other configuration information, that are specific to your
custom SSO implementation.

• CustomCredentials.java – Provides a standard set of credential values for
custom authentication. This class is built and populated by the web-flow handler or
the custom REST authenticator. By default, this class defines the standard
UsernamePasswordCredentials object (provided by CAS), which collects all
information required to complete user authentication in the following properties –
username, userId, and currentACL. The values of these properties populate the
attributes map used by the authenticator (CustomAuthenticator.java), to
perform the actual user authentication.
Extend this class if you wish to require additional credentials for your custom SSO
solution. For an example of how this class passes user information to the authenticator
to complete user authentication, refer to the code of the sample CSSO class
SampleCredentials.java (located in the Misc/Samples/WEM/Samples/
CustomizableSSO/lib folder).

• CustomAuthenticator.java – Implements the CustomAuthentication
interface. This class controls the behavior of the login sequence and handles
authentication requests. By default, it returns to the WEM Framework to complete the
authentication by displaying the standard WEM login form.

All authentication decisions and CAS web-flow actions are directed to this class for
action. CAS web-flow performs a number of steps, one of which invokes the
performLoginAction method. This method displays a login form or communicates
with an external authentication authority.
This class also defines the static method callCsResolverPage which maps an
external user to a WebCenter Sites user. If your custom SSO implementation uses an
external authentication authority to authenticate users, the callCsResolverPage
method must define the unique name for the CSSO authenticator. For more

Note
The default CustomAuthenticator.java class is the most important class
because it contains all the authentication methods for an SSO implementation.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
76
information, see “Mapping External User Identifiers to WebCenter Sites Credentials,”
on page 80.
The following is a complete interface description of the methods this class
implements:
static final int SUCCESS = 0;
static final int GOTOWEM = 1;
static final int FAILURE = 2;
static final int REDIRECT = 3;
static final int ERROR = 4;
static final int REPEAT = 5;

/**
 * Called from UserAuthentication handler to check for

alternate
 * credentials and validate appropriately.
 * @param userCredentials
 * @return
 */
public int authenticate(com.fatwire.wem.sso.cas.custom.basis.

CustomCredentials userCredentials);

/**
 * Called from CSAuthenticationHandler to check for REST user
 * credentials and validate appropriately.
 */
public int authenticateRest(UsernamePasswordCredentials

restCredentials);

/**
 * Called from CSAuthenticationHandler to check is username/

password
 * combination is detected.
 */
public boolean checkRestCredentials(String token);

/**
 * Called from CSAttributeDAO to check for encoded credentials

and
 * if so then return the correct username for DAO processing.
 * @param username
 * @return
 */
public String resolveRestUsername(String username);

/**
 * Called from LoginViewAction to handle login view processing.

This
 * method allows the calling of internal CAS methods.
 * @param context
 * @param userAuthentication
 * @param centralAuthenticationService
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
77
 * @return
 */
public int performLoginAction(RequestContext context,

CustomAuthentication userAuthentication,
CentralAuthenticationService

centralAuthenticationService);

/**
 * Called from casLogoutView to perform sign in cleanup
 * @param request
 * @param response
 */
public void performLogoutAction(HttpServletRequest request,

HttpServletResponse response);

Identifying Your Java Classes to Spring for Instantiation
All customization settings for an SSO implementation are specified in a single Spring
configuration file, located in the spring-configuration folder (in cas/WEB-INF).
The rest of this section contains the following topics:
• Creating a Spring Configuration File
• Placing Your Spring Configuration File

Creating a Spring Configuration File
The classes and properties for the default SSO implementation are defined by the Spring
configuration file customDefaultWEMSSObeans.xml, which is located in the spring-
configuration folder (in cas/WEB-INF). When customizing CSSO, you can either
create a new Spring configuration file or customize the classes and properties referenced
in the default Spring configuration file. The rest of this section focuses on the second
option.
The default Spring configuration file contains several bean identifiers that reference the
classes and properties required for the default SSO implementation. The
customUserConfiguration bean references the CustomConfiguration.java class
and the customUserAuthenticator bean references the
CustomAuthenticator.java class. These classes are instantiated by the Spring
configuration file, which uses them to create the persistent objects for the SSO
implementation’s authentication process. To create a custom SSO solution, you must
reference your custom Java classes within these beans.

Note
The CustomCredentials.java class is not referenced by the Spring
configuration file. Instead, you provide the code that instantiates this object in the
performLoginAction method, defined in the default CSSO
CustomAuthenticator.java class. This method creates a custom credentials
object for every login request and passes it into CAS for authentication.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
78
The customUserConfiguration bean also identifies the configuration properties
which supply system information to the default SSO implementation. These properties are
set with values of the environment on which you are deploying the SSO implementation.
When you customize the Spring configuration file, you must modify the values of the
properties to match the custom SSO implementation’s environment, or include additional
properties required by the custom SSO implementation.
Extending the CustomConfiguration.java class enables you to define additional
properties in the Spring configuration file’s customUserConfiguration bean. For
example, if you created a JSP file that provides a custom login form for your SSO
implementation, create a property that specifies the location of the JSP file by extending
the CustomConfiguration.java class.
The rest of this section analyzes the classes and properties that are referenced in the
default Spring configuration file (customDefaultWEMSSObean.xml).

The default Spring configuration file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <beans xmlns="http://www.springframework.org/schema/beans"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
4 xmlns:flow="http://www.springframework.org/schema/

webflow-config"
5 xmlns:p="http://www.springframework.org/schema/p"
6 xsi:schemaLocation="http://www.springframework.org/

schema/beans http://www.springframework.org/schema/
beans/spring-beans-2.0.xsd

7 http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-
config/spring-webflow-config-1.0.xsd">

8 <!-- Custom SSO Bean definitions. This file defines either
the default CAS/SSO configuration or a special

 user implementation. No other CAS configuration
files are modified for a custom implementation -->

9 <!-- This bean is never modified. It defines the web-flow
controller which always passes control into

 the custom authenticator -->
10 <bean id="customUserLoginAction"

class="com.fatwire.wem.sso.cas.web.CustomLoginViewA
ction"

11 p:centralAuthenticationService-
ref="centralAuthenticationService"

12 p:customAuthentication-
ref="customUserAuthenticator"

13 />
14 <!-- This bean is usually not modified. Override it when

there needs to be a custom encoding for
 information passed between the web-flow and any

external component -->
15 <bean id="customRestCoder"

class="com.fatwire.wem.sso.cas.custom.basis.CustomRest
TokenCoding"

16 />
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
79
17 <!-- Modify this bean with a custom configuration
implementation class when additional parameters are

 needed for a custom implementation -->
18 <bean id="customUserConfiguration"

class="com.fatwire.wem.sso.cas.custom.basis.CustomConf
iguration"

19 p:casLoginUrl="http://localhost:7080/cas/login"
20 p:resolverUrl="http://localhost:8080/cs/custom/

customCsResolver.jsp"
21 p:resolverUsername="fwadmin"
22 p:resolverPassword="xceladmin"
23 p:traceFlag="false"
24 />
25 <!-- Modify this bean with a customAuthentication class for

a custom implementation. -->
26 <bean id="customUserAuthenticator"

class="com.fatwire.wem.sso.cas.custom.basis.CustomAuth
enticator"

27 p:customConfiguration-ref="customUserConfiguration"
28 p:customRestCoder-ref="customRestCoder"
29 />
30 </beans>

Analyzing the default Spring configuration file

• Line 18 is the customUserConfiguration bean, which references the default
CSSO customConfiguration.java class. (For information about this class, see
“Extending the Default CSSO Classes,” on page 75.) This bean also contains the
required properties for the default SSO implementation:
- Line 19 references the casLoginURL property. This property specifies the base

URL to the CAS login function. The domain and port number settings require
modification if the values specified are different from the CAS server installation.

- Lines 20 – 22 reference the external authentication properties – resolverURL,
resolverUsername, and resolverPassword. If WebCenter Sites is used to
authenticate users, these properties do not need to be referenced. If an external
authentication authority is used to authenticate users, these properties must be
referenced. When these properties are referenced they enable you to implement
mapping from an external identifier to a WebCenter Sites system user.
- Line 20 references the resolverURL property. If an external authentication

authority is used to authenticate a user, this property must specify the full
URL to the customCsResolver page, located on WebCenter Sites. The
customCsResolver page obtains a user’s external identifier and queries the
WebCenter Sites database to retrieve the user’s WebCenter Sites credentials.
The domain and port number specified in this property, must be modified if
the values specified are different from the WebCenter Sites installation.

- Line 21 references the resolverUsername property. If an external
authentication authority is used to authenticate a user, this property must
specify the username of a WebCenter Sites user who has permissions to read
the SystemUserAttr table. This username is used when the
customCsResolver page needs to query the WebCenter Sites database to
resolve an external user identifier into a registered WebCenter Sites user.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
80
- Line 22 references the resolverPassword property. If an external
authentication authority is used to authenticate a user, this property must
specify the password of the user identified by the resolverUsername
property (line 21).

For information about implementing mapping, see “Mapping External User
Identifiers to WebCenter Sites Credentials,” on page 80.

- Line 23 references the traceFlag property. This property specifies whether the
trace log, which provides information about the custom SSO layer, is enabled or
disabled. This property can either be set to True or False.

• Line 26 is the customUserAuthenticator bean, which references the default
CSSO CustomAuthenticator.java class. (For information about this class, see
“Extending the Default CSSO Classes,” on page 75.)

Placing Your Spring Configuration File
The default Spring configuration file, which specifies the classes and properties for the
default WEM login behavior, is located in the spring-configuration folder (in cas/
WEB-INF). Placing your own file into the same location requires deactivating the default
file (by removing or changing the file’s .xml extension). This is because Spring loads all
Spring configuration files contained in the spring-configuration folder (in cas/
WEB-INF) and merges those files into a single configuration. As both the custom and the
default files specify the same bean identifiers, only one of the files can be recognized by
the Spring configuration. Duplicate bean identifiers result in initialization failure.

Mapping External User Identifiers to WebCenter Sites Credentials
The CSSO facility enables you to use an external authentication authority to authenticate
WebCenter Sites users. When the external authentication authority validates the user’s
credentials, it associates a unique external identifier with that user. To complete WEM
authentication, the user’s external identifier must be mapped to the corresponding
WebCenter Sites system username, unique identifier, and ACLs by using the method
callCsResolverPage (defined as a static method in the default CSSO class
CustomAuthenticator.java).
To map an external identifier to a WebCenter Sites system user, make sure you have set the
external authentication properties in the Spring Configuration file (see, “Analyzing the
default Spring configuration file,” on page 79). To implement mapping from an external
identifier to the appropriate WebCenter Sites system credentials, do the following:

Note
Avoid deleting customDefaultWEMSSObeans.xml. Instead, remove or change
the file’s .xml extension. This way you can restore the file if you wish to return to
using the default WEM login screen.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
81
To implement mapping

1. Define a unique CSSO authenticator name for the external authentication authority of
your custom SSO implementation in the callCsResolverPage method (defined in
your extended CustomAuthenticator.java class).
For example, the following callCsResolverPage method (defined in the Sample
CSSO class SampleAutheticator.java)defines “samplesso” as the unique
authenticator name:
Map<String,String>csTokens=callCsResolverPage(externalUserId,

”samplesso”)

2. Access the WebCenter Sites Admin interface as a general administrator (for example,
fwadmin/xceladmin).

3. In the Admin tab, expand the Management Tools node and double-click User.
4. Select the user whose external identifier you wish to map to WebCenter Sites

credentials:
a. In the “Enter User Name” field, enter the name of the user.
b. In the “Select Operation” section, select the Modify User Attributes radio

button.
c. Click OK.

The “Modify User” form is displayed:

5. In the “User Name” column, click the name of the user whose external identifier you
wish to map to WebCenter Sites credentials.
The following form is displayed:

6. In the form, fill in the fields:
- In the “Attribute Name” field, enter the unique CSSO authenticator name (the

name used to identify the external authentication authority). This name must
match the unique name of the CSSO authenticator defined in the
callCsResolverPage method (in step 1).

- In the “Attribute Values” field, enter the user’s external identifier provided by the
external authentication authority.

7. Click Modify to store the new attribute and value in the WebCenter Sites
SystemUserAttr database table.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Configuring and Deploying Custom SSO Behavior
82
8. Repeat steps 3 – 7 for all users associated with an external identifier.

Analyzing the Mapping Process

When the callCsResolverPage method is called to map an external identifier to a
WebCenter Sites system user, it defines the unique CSSO authenticator name for your
custom SSO implementation. The method uses the external identifier and the unique
CSSO authenticator name to map the external user to the WebCenter Sites system user.
This map contains the following items, which are placed in the associated properties of the
CustomCredentials object:
• username – The user’s WebCenter Sites username.
• currentUser – The user’s WebCenter Sites unique identifier.
• currentACL – The user’s ACLs.
The CustomCredentials object passes the username, currentUser, and
currentACL values to the authenticate method, defined in the
CustomAuthenticator.java class. The authenticate method uses these values to
build the response map, which identifies the WebCenter Sites user.

Restarting the CAS Web Application
To deploy your custom SSO implementation, restart the CAS web application. Once CAS
has been restarted, it uses the classes defined in the custom Spring configuration file,
located in the spring-configuration folder (in cas/WEB-INF) to provide the custom
login behavior.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
83
Running the CSSO Sample Implementation
The CSSO facility provides a working example of a custom SSO implementation
(including Java source files). The sample replaces the default WEM login behavior with
custom login behavior, which includes the standard username and password fields, an
additional field for a user to specify a domain name, and a field for an external user
identifier. This demonstrates two different types of authentication – username/password
pair (with an additional domain field) and user authentication through an external
authentication authority.

For information about all the sample components included in the CSSO facility, see
“Sample CSSO Components,” on page 87.

To run the sample SSO implementation

1. Deploy the customizable-sso-1.0.jar (Misc/Samples/WEM Samples/
CustomizableSSO) by placing it in the CAS classpath (cas/WEB-INF/lib folder).
This file contains the sample CSSO classes.
For more information about the sample classes, see “Sample CSSO Classes,” on
page 84.

2. Create a fatwire folder in the CAS web application context folder. Copy the
SampleLoginform.jsp file into the fatwire folder.

3. Identify the classes contained in the customizable-sso-1.0.jar file to Spring for
instantiation:
a. Copy the customSampleSSObeans.xml configuration file into the spring-

configuration folder.
b. Modify the properties in the customSampleSSObeans.xml file to match your

operation environment.
c. Remove the .xml extension from the customDefaultWEMSSObeans.xml

configuration file’s name, located in the spring-configuration folder.
For more information about the sample Spring configuration file, see “Sample Spring
Configuration File,” on page 85.

4. If you wish to use the external identifier credentials to validate users, define the
mapping relationship between the external user identifier and the user’s WebCenter
Sites system credentials by adding the appropriate entry to the SystemUserAttr
table.
For instructions, see “Mapping External User Identifiers to WebCenter Sites
Credentials,” on page 80.

5. Restart the CAS web application.

Note
The CSSO sample does not enforce any validation rules that apply to the fields on
the login form. Fields are not checked for completeness and incorrect values are
not reported. If authentication fails, the form is re-displayed without comment. If
you implement this form in a production environment, you must ensure that all
rules are enforced with suitable diagnostic messages if an error occurs.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
84
The sample login form looks as follows:

Sample CSSO Classes
The CSSO sample contains three Java classes which extend the default CSSO classes,
providing the methods for the sample SSO implementation’s login behavior:
• SampleConfiguration.java – This class extends the default CSSO

CustomConfiguration.java class to include a domain property (sampleDomain)
which will be validated by an external authentication authority when a user provides a
value for this field on the login form. The sampleDomain property is injected into the
CSSO configuration by Spring.
This class also includes the sampleFormURL property which defines the sample login
form that is called to retrieve a user’s credentials. Standard and custom properties for
this class are supplied through the sample Spring configuration file.

• SampleCredentials.java – This class extends the default CSSO
CustomCredentials.java class and collects all information required to complete
user authentication. The SampleAuthenticator class uses the
UsernamePasswordCredentials object when a user supplies a username and
password on the login form. If a user supplies an external identifier on the login form
instead of username and password credentials, the SampleCredentials object is
created to provide that information to the authenticator (in this example, sample SSO
class SampleAuthenticator.java).
In CAS, the type of credentials object that is created controls which authenticator is
used (either standard or custom). If username and password credentials are supplied
on the login form, the standard WEM username and password authenticator is used
automatically. If an external identifier is supplied on the login form, the custom
authenticator is called to authenticate the SampleCredentials object.

• SampleAuthenticator.java – This class extends the default CSSO
CustomAuthenticator.java class and contains all the authentication methods that
are called by the CSSO framework. When the sample is deployed, all authentication
decisions and web-flow actions, during CAS authentication, are directed to this class
for action.
The performLoginAction method (extended by this class) displays the sample
login form. When a user submits his credentials on the form, CAS returns to this
method to process the input fields. Depending on the credentials that require
verification, the method creates either a UsernamePasswordCredentials object or
a SampleCredentials object, populated with the user’s assigned credentials. The
credentials object is then inserted into the CAS context (provided by CAS) and a TGT
is requested. The TGT request triggers authentication of the credentials object. If
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
85
authentication is denied, a ticket exception results in the login form being redisplayed.
If the authentication is successful, the next action in the web-flow occurs. For
example, acquire a ticket, append the ticket to the original service URL (the
WebCenter Sites URL), and redirect back to the original service.
There are two authentication methods in this class. One handles authentication using
SampleCredentials and the other authenticates REST requests, which are usually
username/password based. The sample introduces the sampleDomain value as a new
value to be authenticated. In this case, the performLoginAction method encodes
the username, password, and sampleDomain values provided by the user and passes
the encoded values to the UsernamePasswordCredentials object. The default
WEM authentication handler detects the sampleDomain value and passes that
credential to the authenticationRest method. This method decodes the
sampleDomain value from the other values and verifies that the correct domain has
been specified. If the value is incorrect, authentication fails. If the value is correct, this
method encodes the username and password back into the credentials object, and the
default WEM authentication handler validates the username and password.

Sample Spring Configuration File
The classes and properties for the sample SSO implementation are defined by the sample
Spring configuration file customSampleSSObeans.xml (located in Misc/Samples/
WEM Samples/CustomizableSSO/src/main/webapp/WEB-INF/spring-
configuration).
The rest of this section contains the following topics:
• Analyzing the Sample Spring Configuration File
• Placing the Sample Spring Configuration File

Analyzing the Sample Spring Configuration File
The sample Spring configuration file contains the same bean identifiers as the default
Spring configuration file (see, “Creating a Spring Configuration File,” on page 77).
However, the property values are modified to implement the sample login behavior. For
example, the customUserConfiguration bean references the
SampleConfiguration.java class and the customUserAuthenticator bean
references the SampleAuthenticator.java class.
The customUserConfiguration bean also identifies the configuration properties
which supply system information to the sample SSO implementation. For example, since
the SampleLoginForm.jsp file provides the browser form that is used by the sample to
obtain a user’s credentials, the SampleConfiguration.java class is extended to
include the sampleFormURL property. This property specifies the full URL of the login
page for the sample SSO implementation. The domain name and port number match the
CAS server installation, and the path points to where this page was placed during set up.
The following is the sample Spring configuration file’s code. For more information about
the properties referenced by this file, see “Analyzing the default Spring configuration
file,” on page 79.

The sample Spring configuration file

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
86
xmlns:flow="http://www.springframework.org/schema/
webflow-config"

xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/
schema/beans

http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd

http://www.springframework.org/schema/webflow-config

http://www.springframework.org/schema/webflow-config/
spring-webflow-config-1.0.xsd">

<!-- Custom SSO Bean definitions. This file defines either
the default CAS/SSO configuration or a special user
implementation. No other CAS configuration files are
modified for a custom implementation -->

<!-- This bean is never modified. It defines the web-flow
controller which always passes control into the custom
authenticator -->

<bean id="customUserLoginAction"
class="com.fatwire.wem.sso.cas.web.CustomLoginViewAction"

p:centralAuthenticationService-
ref="centralAuthenticationService"

p:customAuthentication-ref="customUserAuthenticator"

/>

<!-- This bean is usually not modified. Override it when
there needs to be a custom encoding for information passed
between the web-flow and any external component -->

<bean id="customRestCoder"
class="com.fatwire.wem.sso.cas.custom.basis.
 CustomRestTokenCoding"

/>

<!-- Modify this bean with a custom configuration class
when additional parameters are needed for a custom
implementation -->

<bean id="customUserConfiguration"
class="com.fatwire.wem.sso.cas.sample.SampleConfiguration"

p:casLoginUrl="http://localhost:7080/cas/login"

p:resolverUrl="http://localhost:8080/cs/custom/
customCsResolver.jsp"

p:resolverUsername="fwadmin"

p:resolverPassword="xceladmin"

p:traceFlag="false"

p:sampleDomain="mydomain"

p:sampleFormUrl="http://localhost:7080/cas/
SampleLoginForm.jsp"

/>

<!-- Modify this bean with a customAuthentication class for
a custom implementation. -->

<bean id="customUserAuthenticator"
class="com.fatwire.wem.sso.cas.sample.SampleAuthenticator"
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
87
p:customConfiguration-ref="customUserConfiguration"

p:customRestCoder-ref="customRestCoder"

/>

</beans>

Placing the Sample Spring Configuration File
To instantiate the sample classes, place the sample Spring configuration file in the
spring-configuration folder (in cas/WEB-INF) and remove the .xml extension
from the default Spring configuration file. For more information, see “Placing Your Spring
Configuration File,” on page 80.

Sample CSSO Components
The sample CSSO implementation’s components are located in the /WEM Samples/
CustomizableSSO folder. The following folders are included with the sample CSSO
implementation:

Folder Description

Misc/Samples/WEM Samples/
CustomizableSSO

Contains the customizable-sso-
1.0.jar file. This jar file provides the
classes of the executable code for the
sample. If you wish to deploy the sample
SSO implementation, place this jar file in
the CAS classpath (cas/WEB-INF/lib
folder).

Misc/Samples/WEM Samples/
CustomizableSSO/lib

Contains all the third-party jar files required
to compile the Java source files for the
sample SSO implementation.

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/dist

Contains Word documents that explain the
individual source components and
operations of the sample implementation.
Note: We recommend reviewing these
documents before viewing the sample’s
source code.

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/java

The root folder for the Java source files.

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/
webapp/fatwire

Contains SampleLoginForm.jsp. The
JSP provides the browser form that is used
by the sample to obtain a user’s login
credentials. Implementing the sample
requires creating a fatwire folder in the
CAS application context folder and copying
the SampleLoginForm.jsp to that folder.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 8. Customizable Single Sign-On Facility

 Running the CSSO Sample Implementation
88
Misc/Samples/WEM Samples/
CustomizableSSO/src/main/
webapp/WEB-INF/spring-
configuration

Contains the sample Spring configuration
file customSampleSSObeans.xml, which
defines the Spring bean definitions required
by the sample SSO implementation. This
file must be placed in the spring-
configuration folder (in cas/WEB-
INF). The file that exists in the spring-
configuration folder
(customDefaultWEMSSObeans.xml)
must be given an extension other than .xml
or removed.
Note: Save a copy of the
customDefaultWEMSSObeans.xml file
so it can be restored when you wish to
return to the standard WEM login screen.

Folder Description
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

89
Chapter 9

Buffering
• Introduction
• Architecture
• Using Buffering
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 9. Buffering

 Introduction
90
Introduction
Asset create, update, and delete operations are much slower than the read operation.
Sometimes, it is acceptable to delay these operations to occur at a future time with the
guarantee of eventual consistency. That is, if a delayed (buffered) operation was
performed, it is guaranteed that the WebCenter Sites platform will receive the change at
some finite, undetermined period of time. Although buffering operations are extremely
fast, they do not speed up the total time that is needed to create, update, and delete assets
in the platform.

Architecture
The current implementation of buffering subsystem relies on Java Messaging Service
(JMS) technology.

Buffering consists of the following components:
• Buffering Producer, which produces messages and puts them into the Messaging

Queue (MQ).
• Buffering Consumer, which picks messages from MQ and persists them in the

platform.
The buffering producer can be used on both WebCenter Sites and Remote Satellite Server,
where the asset REST service <BaseURI>/sites/<sitename>/types/
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 9. Buffering

 Using Buffering
91
<assettype>/assets/<id> is available. When used on Remote Satellite Server, the
buffering producer does not communicate with WebCenter Sites, which ensures linear
scalability of the entire system.

Using Buffering
1. Install the JMS provider if one is not already available. (For supported providers, see

the Oracle WebCenter Sites Certification Matrix.
2. Configure BufferingConfig.xml on WebCenter Sites and optionally on Remote

Satellite Server.

3. Specify buffer=true when invoking the REST asset service <BaseURI>/sites/
<sitename>/types/<assettype>/assets/<id>.

The default BufferingConfig.xml file, provided with WebCenter Sites, contains the
sample configuration for Apache ActiveMQ. The BufferingConfig.xml file is similar
for both WebCenter Sites and Remote Satellite Server, except that the list of message
consumers for Remote Satellite Server is empty.

Note
The buffering consumer is available only on WebCenter Sites. We recommend
enabling the buffering consumer only on the primary cluster member. Enabling on
multiple cluster members cannot guarantee that the sequence of CRUD operations
will be preserved.

id="bufferingManager"
class="com.fatwire.cs.core.buffering.jms.JmsBufferingManager"

Property name Description

jmsConnectionFactory Required. Instance of
javax.jms.ConnectionFactory

jmsDestination Required. Instance of javax.jms.Destination

messageConsumers List of com.fatwire.cs.core.buffering.
IMessageConsumer implementations.

Note
Buffering does not return the result of PUT and POST operations in the
response. Instead, an empty payload is sent. Developers should be aware of
this behavior when coding the client application.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Chapter 9. Buffering

 Using Buffering
92
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

93
A p p e n d i x A

Registering Applications Manually
• Registration Steps
• Reference: Registration Asset Types
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Registration Steps
94
Registration Steps
Registration exposes applications in the WEM Framework, as described on page 20.
Registering an application manually requires using the WebCenter Sites Admin interface
to create an asset for the application, create an asset for each of its views, and associate the
view assets with the application asset. The registration asset types FW_Application and
FW_View are enabled on AdminSite.

To manually register an application and view

The section uses code from the “Articles” sample application to illustrate the registration
process. “Articles” has a single view of type iframe. The same steps apply to JavaScript
and HTML views.
1. Create or get an icon to represent your application. (The icon will be displayed in the

applications bar.)
(The “Articles” sample application uses the articles.png image file located in:
/sample app/articles/src/main/webapp/images/)

2. Create a file that specifies the layout of the application in HTML, i.e., for each view,
create a placeholder element to hold the content rendered by the view. Applications
and views are related as shown in Figure 9, on page 46.
For example, layout.jsp (for the “Articles” sample application) contains the
following line:

<div id="articles" style="float:left;height:100%;width:100%"
class="wemholder"></div>

The view’s content will be rendered within the placeholder element when the
application is displayed (layout.app renders the application’s layout; home.app
renders the view).

3. Register the view and application.
a. Log in to the WebCenter Sites Admin interface as a general administrator,

navigate to the AdminSite and click the Admin tab, where the FW_View and
FW_Application asset types are enabled.
(We assume you will create the view and application assets in the same session, in
which case both assets will be listed on the History tab. When creating the
application asset, you will select the view asset from the History tab and associate
it with the application asset. The History tab is volatile; it is cleared at the end of
the user’s session. Assets can be permanently placed on the Active List tab. For
instructions, see the Oracle WebCenter Sites Administrator’s Guide.)

Note
When creating the layout file, specify a unique id for the placeholder
element. You will specify the same id for the Parent Node attribute
when creating the view asset. Use class=”wemholder” for the
placeholder elements.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Registration Steps
95
b. Create an instance of the FW_View asset type:
Click New, select New FW_View, and set attributes as shown below this figure.
(This figure displays attribute values for the view asset of the “Articles” sample
application.)

Name: Enter a short descriptive name for this view asset.

Parent Node: Enter the id of the placeholder element (defined in step 2 on
page 94) that will hold the content rendered by the view.

View Type: Select one of the following options to specify how the view’s content
should be rendered in the placeholder:
- Iframe – renders the view in an iframe into the placeholder element
- IncludeHTML – renders HTML into the placeholder element
- IncludeJavaScript – renders JavaScript into the placeholder element

Source URL: Enter the URL that provides content for the view. For example,
Source URL for the “Articles” sample application takes the following value:
http://localhost:9080/articles-1.0/home.app
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Registration Steps
96
c. Create an instance of the FW_Application asset type:
Click New, select New FW_Application, and set attributes as shown below this
figure. (This figure displays attribute values for the application asset of the
“Articles” sample application.)

Name: Enter a short descriptive name for this application asset.

ToolTip: Enter the text that will be displayed over the application’s icon when
users mouse over the icon.

Icon URL: Enter the URL of the icon that represents the application. The icon
will be displayed on the login page and at the top of the WEM interface. For
example, the Icon URL for the “Articles” sample application takes the following
value: http://localhost:9080/articles-1.0/images/articles.png

Hover Icon URL: Enter the URL of the icon that represents the application when
users mouse over the icon.

Click Icon URL: Enter the URL of the icon that represents the application when
users click on the icon.

Active Icon URL: Enter the URL of the icon that represents the application when
it is in use.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Registration Steps
97
Layout Type: LayoutRenderer (the default and only value). Layout Type is
used by the UI container to render the application’s views by using the
application’s layout page (specified below in the Layout URL attribute).

Layout URL: Enter the URL of the page that displays the application’s layout.
The layout page has only HTML placeholder elements (such as div) for placing
the view(s).

For example, Layout URL for the “Articles” sample application takes the
following value: http://localhost:9080/articles-1.0/layout.app
(rather than http://.../layout.jsp, given the Spring MVC framework.)

Related: Associated FW_View: views: Select the view asset created on page 95
(click the History tab, select the view asset, and click Add Selected Items).
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
98
Reference: Registration Asset Types
• FW_View Asset Type
• FW_Application Asset Type

FW_View Asset Type
This asset type is used to register the views of an application. For each view, create an
instance of FW_View. Attributes of FW_View are listed below as they appear in the
WebCenter Sites Admin interface and in the Oracle WebCenter Sites: Web Experience
Management Framework REST API Bean Reference. Shading indicates a required
attribute. This asset type is enabled on the site named ‘AdminSite.’

Table A-1: FW_View Asset Type Attributes

Attribute:

Description
WebCenter

Sites Interface REST API

Name name Short descriptive name for this view asset.

Description description Description of this view asset.

Parent Node parentnode ID of the placeholder element in the application’s layout file. The
placeholder element will hold the content rendered by the view.
The layout file has only HTML placeholder elements (such as div)
for placing the views.

View Type viewtype How the view should be rendered. The following view types are
available:
• Iframe – renders the view in an iframe into the placeholder

element
• IncludeHTML – renders HTML into the placeholder element
• IncludeJavaScript – renders JavaScript into the placeholder

element

Source URL sourceurl URL that provides content for the view.

JavaScript javascriptcontent Required if IncludeJavaScript is the view type and Source
URL is not specified.
The content specified by this attribute is included in a script tag if
IncludeJavaScript is specified as the view type.
If IncludeJavaScript is specified, either Source URL must be
specified, or code must be provided for the JavaScript attribute.

Content includecontent Required if IncludeHTML is the view type and Source URL is not
specified. The content specified by this attribute is included in the
placeholder element tag if IncludeHTML is specified as the view
type. If IncludeHTML is specified, either the Source URL must be
specified or code must be provided for the Content attribute.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
99
FW_Application Asset Type
This asset type is used to register the application. The asset type is enabled on AdminSite.
Attributes of FW_Application are listed below as they appear in the WebCenter Sites
Admin interface and in the Oracle WebCenter Sites: Web Experience Management
Framework REST API Bean Reference. Shading indicates a required attribute.

Table A-2: FW_Application Asset Type Attributes

Attribute:

Description

WebCenter
Sites

Interface REST API

Name name Short descriptive name for this application asset.

Description description Description of this application asset.

Tooltip tooltip Text that will be displayed on the application’s icon when users
mouse over the icon.

Icon URL iconurl URL of the icon that represents the application in the WEM
Framework.

Hover Icon URL iconurlhover URL of the icon that represents the application when users mouse
over the icon.

Click Icon URL clickiconurl URL of the icon that represents the application when users click on
the icon.

Active Icon
URL

iconurlactive URL of the icon that represents the application while it is in use.

Layout Type layouttype Type of layout. The value is LayoutRenderer.
Layout Type is responsible for rendering the application’s views by
using the application’s layout page (specified in the Layout URL
attribute, below).

Layout URL layouturl URL of the page where the application’s layout is displayed. This
page has only HTML placeholder elements (such as div) for placing
the views.

Related:
Associated
FW_Applicati
on: extends

parentnode Parent application which the current application extends.

Related:
Associated
FW_View:
views

views List of view assets used in this application.
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
100
Oracle WebCenter Sites Developer’s Guide for the Web Experience Management Framework

	Developer’s Guide for the Web Experience Management Framework
	Contents
	Welcome to Oracle WebCenter Sites: WEM Framework
	Introduction
	Prerequisites for Application Development
	Getting Started

	Overview
	WEM Framework
	REST Services
	UI Container
	Registration
	WEM Context Object

	Single Sign-On
	Authorization Model
	Custom Applications

	‘Articles’ Sample Application
	Overview
	Launching the ‘Articles’ Sample Application
	Building and Deploying the ‘Articles’ Application
	Registering the ‘Articles’ Sample Application

	Testing the ‘Articles’ Application

	Developing Applications
	Overview
	Application Structure
	Making REST Calls
	Making REST Calls from JavaScript
	Making REST Calls from Java

	Constructing URLs to Serve Binary Data
	Context Object: Accessing Parameters from the WEM Framework
	Same Domain Implementations
	Cross-Domain Implementations
	Methods Available in Context Object

	Registration Code
	Registering Applications with an iframe View
	Registering Applications with JavaScript and HTML Views

	Developing Custom REST Resources
	‘Recommendations’ Sample Application
	Overview
	Building and Deploying the Application
	Testing the Application

	Creating REST Resources
	Application Structure
	Steps for Implementing Custom REST Resources

	Single Sign-On for Production Sites
	SSO Sample Application
	Deploying the SSO Sample Application
	Application Structure
	Implementing Single Sign-On
	Implementing Single Sign-Out

	Using REST Resources
	Authentication for REST Resources
	Acquiring Tickets from Java Code
	Acquiring Tickets from Other Programming Languages (Over HTTP)
	SSO Configuration for Standalone Applications

	Configuring CAS
	REST Authorization
	Security Model
	Using the Security Model to Access REST Resources
	Configuring REST Security
	Privilege Resolution Algorithm

	Managing Assets Over REST

	Customizable Single Sign-On Facility
	Customizing Login Behavior for the WEM Framework
	Components of the Default CSSO Implementation
	Configuring and Deploying Custom SSO Behavior
	Extending the Default CSSO Classes
	Identifying Your Java Classes to Spring for Instantiation
	Mapping External User Identifiers to WebCenter Sites Credentials
	Restarting the CAS Web Application

	Running the CSSO Sample Implementation
	Sample CSSO Classes
	Sample Spring Configuration File
	Sample CSSO Components

	Buffering
	Introduction
	Architecture
	Using Buffering

	Registering Applications Manually
	Registration Steps
	Reference: Registration Asset Types
	FW_View Asset Type
	FW_Application Asset Type

