
Oracle® WebCenter Sites
Developer’s Guide for Creating Gadgets

11g Release 1 (11.1.1)

February 2012

Oracle® WebCenter Sites Developer’s Guide for Creating Gadgets, 11g Release 1 (11.1.1)

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Tatiana Kolubayev

Contributing Author: Melinda Rubenau

Contributor: Alex Vushkan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

3

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Table of

Contents

About This Guide .5
Audience . 5
Related Documents . 5
Conventions . 6
Third-Party Libraries . 6

1 Introduction . 7
Before You Begin . 8
Gadget Specifications . 8

Asset Model and Templates . 9
Sample Assets . 9
Auxiliary Files. 10
OAuth Protocol . 11

Sample Gadgets . 13
List Gadget . 13
ThumbList Gadget . 14
Slideshow Gadget . 15
RSS Feed Gadget . 16

Asset Structure. 16

2 Template Flow . 17
Template Flow for the List Gadget . 18
Differences in Template Flow . 20
Why Server Calls are Done Separately . 20

3 Creating Your Own Gadgets . 21
Creating Gadgets on Different CM Sites . 22
Custom Gadgets. 22

New Gadget, WebCenter Sites Generates Only XML . 22
New Gadget, WebCenter Sites Generates XML and Fields Additional Requests . . . 22

Table of Contents
4

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Same Gadget Logic, Different Content. 23
Prerequisites for Registering Gadgets . 23
Sample RSSFeed Gadget . 26
Sample List Gadget . 28

5

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

About This Guide

This guide introduces template developers to the process of creating gadgets for the Oracle
WebCenter Sites: Gadgets application. Sample gadgets, which are included with the
Gadgets application, are used throughout this guide to illustrate the development task.
This set of fully operational gadgets runs on the FirstSite II sample site, available in
Oracle WebCenter Sites. The sample gadgets’ underlying asset model and template
framework provide the tools developers need to get started with creating their own
gadgets. One of the sample gadgets supports the OAuth protocol to provide an example of
how developers can configure their own gadgets with OAuth support.

Applications discussed in this guide are former FatWire products. Naming conventions are
the following:

• Oracle WebCenter Sites is the current name of the product previously known as
FatWire Content Server. In this guide, Oracle WebCenter Sites is also called
WebCenter Sites.

• Oracle WebCenter Sites: Gadgets is the current name of the application previously
known as FatWire Gadget Server. In this guide, Oracle WebCenter Sites: Gadgets is
also called Gadgets.

The Gadgets application integrates with Oracle WebCenter Sites according to
specifications in the Oracle WebCenter Sites 11g Release 1 (11.1.1.x) Certification Matrix.
For additional information, see the release notes for the Gadgets application. Check the
WebCenter Sites documentation site regularly for updates to the Certification Matrix and
release notes.

Audience
This guide is intended for developers. These users are assumed to have a clear knowledge
of their company’s business needs and a basic understanding of their roles in the
development of the website and its back end. Developers should also know Java,
JavaServer Pages (JSP), XML, and HTML.

Related Documents
For more information, see the following documents:

• Oracle WebCenter Sites Installation Guide for the Gadgets Application

About This Guide
6

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

• Oracle WebCenter Sites User’s Guide for the Gadgets Application

Conventions
The following text conventions are used in this guide:

• Boldface type indicates graphical user interface elements that you select.

• Italic type indicates book titles, emphasis, or variables for which you supply particular
values.

• Monospace type indicates file names, URLs, sample code, or text that appears on the
screen.

• Monospace bold type indicates a command.

Third-Party Libraries
Oracle WebCenter Sites and its applications include third-party libraries. For additional
information, see Oracle WebCenter Sites 11gR1: Third-Party Licenses.

7

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Chapter 1

Introduction

This document provides guidelines for creating gadgets based on WebCenter Sites
template code.

This chapter contains the following sections:

• Before You Begin

• Gadget Specifications

• Sample Gadgets

• Asset Structure

Chapter 1. Introduction

Before You Begin
8

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Before You Begin
Users of this guide must have:

• A developer’s knowledge of WebCenter Sites’ basic and flex asset models and
templating.

• The Google Gadget API. Related resources are available at the following URLs:

- The API Reference is available at:
http://code.google.com/apis/gadgets/docs/reference/

- The API Developer's Guide is available at:
http://code.google.com/apis/gadgets/docs/dev_guide.html

• Familiarity with OpenSocial Standards, used to create the environment that enables
gadget users to set preferences. OpenSocial documentation is available at:
http://wiki.opensocial.org/

• The Gadgets application’s sample gadgets installed on the WebCenter Sites
FirstSite II sample site. Installation instructions are available in the Oracle WebCenter
Sites Installation Guide for the Gadgets Application. Information about managing
gadgets can be found in the Oracle WebCenter Sites User’s Guide for the Gadgets
Application.

• An understanding of the OAuth protocol, which is used by the sample List Gadget.
Information about OAuth is available at the following URLs:

- The Beginner’s Guide to OAuth is available at:
http://oauth.net/

- More information about the OAuth protocol is available at:
http://tools.etf.org/html/rfc5849

Gadget Specifications
Four sample gadgets are included with the Gadgets application. They are enabled on the
FirstSite II sample site. You can develop your own gadgets, using the processes outlined in
this guide. The sample gadgets are:

• List Gadget, which presents a listing of headlines and article summaries, linking to
their respective full articles. This gadget supports OAuth, which means a visitor can
authorize the gadget to retrieve her personalized data (in this case, the visitor’s user
name and profile picture) from the gadget’s OAuth Service Provider (which is the
Gadgets application in this example).

• ThumbList Gadget, which presents a list of products, with a thumbnail
accompanying each product’s description.

• Slideshow Gadget, which renders a series of product images into a slideshow, where
the user can click on a thumbnail to view a larger image, then click the larger image to
open the page containing full details on the product.

• RSS Feed, which presents a list of headlines retrieved from an RSS feed. Each
headline links to a full article.

The rest of this chapter provides information about the gadgets’ major components and
describes the sample gadgets in detail. This chapter also describes the OAuth protocol, and

Chapter 1. Introduction

Gadget Specifications
9

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

the functionality OAuth enables when it is integrated with the Gadgets application and
supported by a gadget (List Gadget in this example).

Asset Model and Templates
Installing the sample gadgets on FirstSite II installs the basic components for creating and
rendering gadgets. The components are the data model, templates, and sample assets that
provide the gadgets’ content:

• FW_CSGadget asset type (its description is CS-Based Gadget). All sample gadgets
are of type FW_CSGadget.

• FW_RSS asset type (its description is RSS Feed). This asset type is used to specify a
URL as the source of content for the RSS Feed gadget.

• FW_CSGadget/GenerateGadgetXML template, which is accessed by the Gadgets
application. This template is used to render the gadget descriptor XML (also referred
to as gadget specification XML).

• FW_CSGadget/ListSiteGadgets template, which provides a gadget descriptor
URL for each gadget on the current content management site.

Sample Assets
The sample assets either provide content for the gadgets or they render the gadgets. The
sample assets are referenced by the sample gadgets as described below:

• Gadget content is provided by:

- Content assets of type Content_C (with parent of type Content_P),
representing sports articles. These assets are used by the List Gadget.

- Product assets of type Product_C (with parent of type Product_P), representing
sports products. These assets are used by the ThumbList and Slideshow gadgets.

- Media assets of type Media_C (with parent of type Media_P), representing
images used by the Product assets. These assets are used by the ThumbList and
Slideshow gadgets.

- Recommendation (AdvCols) assets, encapsulating the Content and Product assets.
Recommendation assets are used by the List, ThumbList, and Slideshow sample
gadgets.

- Content of type FW_RSS, which specifies a URL as the source of content for the
RSS Feed gadget.

• Templates render the gadgets:

- The GenerateGadgetXML template is accessed by the Gadgets application and
calls the templates listed below.

- An FW_CSGadget-typed template exists for each of the sample gadgets. Each of
these templates outputs the body of a gadget descriptor XML understandable by
the Gadgets application. The templates are G_List, G_RSS, G_Slideshow, and
G_ThumbList.

Chapter 1. Introduction

Gadget Specifications
10

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

- A typed template named G_JSON exists for each of the asset types referenced by
the sample gadgets: Content_C, Media_C, Product_C, and Recommendation
(AdvCols). These templates provide JSON-formatted output containing data
necessary to render the HTML for each asset that is displayed in the gadgets. The
templates are invoked via remote requests made in the gadget code.

Auxiliary Files
The following image files are used by the sample gadgets:

• Scroller arrow images used by the Slideshow gadget (Figure 1, on page 10). These
static images are located in the FirstSiteII/gadgets subdirectory under the
WebCenter Sites web application.

• Images used as icons, thumbnails, and previews to represent a gadget’s various
sections. The default images are located in the sample/GadgetImages directory in
the gadgetserver.zip installation package.

Figure 1: Images used by sample gadgets

gadget icon gadget thumbnails

scroller
arrows

Chapter 1. Introduction

Gadget Specifications
11

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

OAuth Protocol
The sample List Gadget supports the OAuth protocol. The Gadgets application includes
OAuth protocol support to enable visitors to personalize OAuth-enabled gadgets. The
OAuth protocol communicates in a secure manner to enable a visitor to authorize a gadget
to retrieve certain protected personal data from a third-party website by using the Gadgets
application as a proxy. This is achieved with the help of visitor redirects, handshakes, and
digital signatures, as shown in Figure 2.

Figure 2: Personalized data retrieval as seen in the sample List Gadget

gadget
preview
image

1. Visitor makes a request for
her personalized data by
clicking the “Login” link.

2. The gadget makes a request to the
User Service to authenticate the
visitor by invoking the User
Service’s API, using the
gadgets.io.makeRequest()
call.

3. The Gadgets application
proxies the request to
the User Service.

4. The User Service displays the log
in form to the visitor in a pop-up
window. This form is submitted to
the User Service, which in turn
validates the visitor’s credentials.

5. Once the visitor is
authenticated, the
OAuth session starts
and the User Service
serves the requested
data to the Gadgets
application.

6. The Gadgets application
exchanges the OAuth
session token in return for
the requested data.

(OAuth Service Provider)

 Gadgets Application

Chapter 1. Introduction

Gadget Specifications
12

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

OAuth enables the List Gadget to retrieve a visitor’s user name and profile picture from its
OAuth Service Provider (local installation of the Gadgets application in this example),
which is specified in the OAuth section of the gadget’s descriptor XML file. Any gadget
that is configured to support OAuth must define OAuth parameters in its descriptor XML
file.

Gadgets with OAuth support:

• Can be configured to use visitor authentication based on either the Gadgets
application or a third-party (such as Google, Twitter, and so on).

• Contain an OAuth section in their descriptor XML files. The OAuth section specifies
the gadget’s OAuth Service Provider, which is the website from which the gadget
requests visitor authentication.

• Use secure APIs to display a pop-up authentication window from the website the
gadget uses for visitor authentication. Once the visitor is authenticated, the gadget
securely retrieves that visitor’s personalized data from the website which hosts the
data by using the Gadgets application as a proxy, without storing the visitor’s
credentials on the Gadgets application.

All requests that the Gadgets application transfers between the gadget and the gadget’s
OAuth Service Provider are secured with the following gadget-specific information:

- Consumer Key – Also known as an API key, this is a value used by the gadget to
identify itself to the OAuth Service Provider.

- Consumer Secret – A secret used by the gadget to establish ownership of the
consumer key to the OAuth Service Provider.

- Consumer Signature Method – The type of digital signature algorithm used to
sign requests secured with OAuth (HMAC-SHA1 or RSA-SHA1). The signature
process encodes the consumer key and secret into a verifiable value. This prevents
unauthorized parties from using the gadget-specific consumer key and secret to
access a visitor’s protected resources.

• Include “ouathpopup” as a required feature in the <ModulePrefs> tag of their
descriptor XMLs, which enables gadgets to access the Gadgets application’s OAuth
library. This library is provided to the gadget automatically by the Gadgets
application, and when used together with the gadgets.io.makeRequest call,
enables the gadget to make visitor redirects, handshakes, and digital signatures to
securely retrieve a visitor’s personalized data, without storing any of the visitor’s
credentials on the local installation of the Gadgets application.

Developers can create their own gadgets with OAuth support by using JavaScript APIs.
For information about the parameters required to configure a gadget to use the OAuth
protocol, see Appendix A, “Analyzing Gadget Descriptor XML Files.”

Administrators have permissions to register gadgets of type FW_CSGadget and/or third-
party gadgets with OAuth support to the Gadgets application. For more information about

Note

Some gadgets with OAuth support store data on one website, but authenticate
visitors through another. In this case, the website that stores visitor credentials
provides the log in form to the Gadgets application. Once the visitor is
authenticated, the website that hosts the data exchanges the Gadgets
application’s session token for the visitor’s requested data.

Chapter 1. Introduction

Sample Gadgets
13

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

registering OAuth-enabled gadgets to the Gadgets application, see the Oracle WebCenter
Sites User’s Guide for the Gadgets Application.

Sample Gadgets
This section outlines the WebCenter Sites sample gadgets and the assets they use. Each
asset is listed in the same order in which it is called by the Gadgets application when the
Gadgets application initiates the request. This guide uses the List Gadget in particular to
illustrate various concepts.

List Gadget
The List Gadget renders a Recommendation asset containing a list view of Content assets.
Each headline links to its full article.

The List Gadget asset references the Recommendation asset to be rendered in the gadget
and the template (G_List) that will render the gadget. The relevant assets are:

• The ListGadget asset of type FW_CSGadget, referencing the Recommendation
asset to be rendered.

• The G_List template, which produces the body of the gadget descriptor XML used
by the Gadgets application to render the gadget. (This process is outlined in the
Chapter 2, “Template Flow.”)

• G_JSON templates, which render the Recommendation asset and its content:
AdvCols/G_JSON and Content_C/G_JSON

• The Recommendation (AdvCols) asset to be rendered in the gadget.

• Content assets included in the Recommendation.

Content Assets

Recommendation
Asset

Link used to start
an OAuth session

Chapter 1. Introduction

Sample Gadgets
14

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

ThumbList Gadget
The ThumbList Gadget is similar to the List Gadget in that it also renders a
Recommendation asset. The gadget contains a list view of Product assets. Each headline
links to its product page. However, in this gadget, each product is accompanied by a
thumbnail image from a Media asset, which is associated with the Product assets via their
“Image” attribute.

The relevant assets are:

• The ThumbListGadget asset of type FW_CSGadget, referencing the
Recommendation to be rendered and the template (G_ThumbList) that will render the
gadget.

• The G_ThumbList template which produces the body of the gadget descriptor XML
used by the Gadgets application to render the gadget.

• G_JSON templates, which render the Recommendation asset and its content:
AdvCols/G_JSON, Product_C/G_JSON, and Media_C/G_JSON

• The Recommendation (AdvCols) asset to be rendered in the gadget.

• Product assets included in the Recommendation asset.

• Media assets referenced by the “Image” attribute of each of the Product assets.

Content Assets

Recommendation
Asset

Chapter 1. Introduction

Sample Gadgets
15

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Slideshow Gadget
The Slideshow gadget uses the same content as the ThumbList gadget, but presents the
content in an entirely different manner. This gadget displays a thumbnail strip filled with
product images. Clicking on an image in the strip displays the image at the maximum size
allowed by the gadget area. Clicking the full-size image opens the product’s detail page.

The relevant assets are:

• The SlideshowGadget asset referencing the Recommendation asset to be rendered
and the template (G_Slideshow) that will render the gadget.

• The G_Slideshow template which produces the body of the gadget descriptor XML
used by the Gadgets application to render the gadget.

• G_JSON templates which render the Recommendation asset and its content:
AdvCols/G_JSON, Product_C/G_JSON, and Media_C/G_JSON

• The Recommendation (AdvCols) asset to be rendered in the gadget.

• Product assets included in the Recommendation asset.

• Media assets referenced by the “Image” attribute of each Product asset.

Thumbnail Strip

Chapter 1. Introduction

Asset Structure
16

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

RSS Feed Gadget
The RSS Feed gadget displays the most recent items from an RSS feed, utilizing the
Google Gadget API for its built-in feed-reading functionality.

The relevant assets are:

• The RSSGadget asset of type FW_CSGadget referencing the feed (FW_RSS) to be
requested and the template (G_RSS) that will render the gadget.

• The G_RSS template which produces the body of the gadget descriptor XML used by
the Gadgets application to render the gadget.

• An FW_RSS asset containing the feed URL to be requested in the gadget.

Asset Structure
The sample gadgets are based on a
new asset type, FW_CSGadget, which
is used to specify information required
for rendering the gadgets. It is a basic
asset type, containing the following
attributes:

• Name of descriptor
template is used to specify the
name of the FW_CSGadget
template that will be invoked to
generate the gadget’s descriptor
XML. For the List Gadget, the
template is FW_CSGadget/G_List (hence, G_List is specified in this field and later
resolved as a typed template).

• The DataAsset association is a single, any-type asset association. This association
references the asset that provides the main content of the gadget. For example, the
DataAsset association for the List Gadget references a Recommendation asset
containing a static list of Content assets to be rendered by the gadget.

The descriptor template attribute is read by the FW_CSGadget/GenerateGadgetXML
template. The DataAsset association is read by the descriptor template itself (for example,
G_List).

17

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Chapter 2

Template Flow

This chapter describes the flow of template execution, using the List Gadget as an
example.

• Template Flow for the List Gadget

• Differences in Template Flow

• Why Server Calls are Done Separately

Chapter 2. Template Flow

Template Flow for the List Gadget
18

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Template Flow for the List Gadget
By design, the only way to request a gadget’s descriptor XML is by invoking the
GenerateGadgetXML template on an FW_CSGadget asset. When the template is
invoked, the rendering process begins, as shown in Figure 3 and outlined below:

Figure 3: Gadget XML output

1. GenerateGadgetXML first outputs the XML declaration, a recommended feature for
all XML documents. Outputting the XML declaration at the beginning of the process
saves gadget developers from having to consider it in every gadget they write.

2. GenerateGadgetXML then loads the asset that corresponds to the passed c
(FW_CSGadget) and cid (id of ListGadget) and looks up its
descriptortemplate value.

3. GenerateGadgetXML invokes the template in the descriptortemplate field
(FW_CSTemplate/G_List in the case of the List Gadget), passing it the same c and
cid as in step 2.

Notice that the G_List template is in itself not externally callable (its SiteCatalog
entry’s pageletonly field is set to T). This setting prevents these templates from
being called directly (for example, in cases where they are not designed to be called).

Note

Together, the c and cid point to a specific asset in the WebCenter Sites
system. Parameter c is the type of asset and cid is the identifier of the asset.
This information is required whenever a template is invoked.

Chapter 2. Template Flow

Template Flow for the List Gadget
19

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

4. The called template, G_List, outputs the entire body of the gadget descriptor XML.
At this point, the gadget descriptor XML is complete.

Once the gadget is rendered based on its descriptor XML, the gadget retrieves its content.
Figure 4 illustrates how the List Gadget retrieves content. This process varies, depending
on the gadget. The List Gadget retrieves articles from WebCenter Sites via the following
JavaScript output by the G_List template (this line of code calls a Google Gadgets API
function):

gadgets.io.makeRequest(url, handleJson, params);

The G_List template crafts an additional WebCenter Sites URL, pointing to this gadget's
DataAsset (in this case a Recommendation), via the G_JSON template for that asset
type. That URL is eventually fed to the gadgets.io.makeRequest function, which can
be used to make additional remote server calls expecting various forms of data such as
XML, JSON, or even Atom/RSS. This request initiates the process of retrieving content.

Figure 4: Retrieving content

1. Gadget code in the XML body invokes the AdvCols/G_JSON template and prepares
the beginning of a JSON response. Since Recommendations contain lists of other
assets, the template simply begins the output of a JSON array, then loops through the
list of assets, expecting to call a respective G_JSON template on each.

2. In the case of the List Gadget, all of the children are Content assets, so Content_C/
G_JSON is invoked for each asset in the Recommendation. For each invocation, the
Content_C/G_JSON template outputs a complete JSON object representation
containing relevant fields of the asset.

Note

Appendix A, “Analyzing Gadget Descriptor XML Files provides information
about the features of the descriptor XML. The template code itself contains
comments illuminating important concepts. See “Before You Begin,” on
page 8 for links to additional resources regarding the authoring of gadget
descriptor XMLs.

Chapter 2. Template Flow

Differences in Template Flow
20

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

3. In between individual Content_C/G_JSON calls, AdvCols/G_JSON outputs a
comma to properly delimit objects in the array it is constructing. After the loop is
completed, the AdvCols/G_JSON template closes the array.

4. This array is received by the gadget code (gadgets.io.makeRequest, page 19),
which then executes the handleJson callback function as prescribed by the original
makeRequest call. The handleJson function wraps the content in HTML, which
renders that gadget’s view (a list view in this example).

Differences in Template Flow
The previous section illustrated template flow for the List Gadget. While template flows
for the other sample gadgets are very similar, differences in their WebCenter Sites
template logic are worth noting.

ThumbList and Slideshow
Gadget rendering follows a path in WebCenter Sites that is very similar to the path of the
List Gadget. The main difference is what is invoked by the AdvCols/G_JSON template.
While the List Gadget references a Recommendation filled with Content assets, the
ThumbList and Slideshow gadgets reference a Recommendation containing Product
assets. These gadgets also inspect attributes specific to the response of the Product_C/
G_JSON template (which includes data produced by the Media_C/G_JSON template).

RSS
The RSS Gadget’s second request is fired straight to the URL of the RSS feed, which may
or may not be on WebCenter Sites. The URL is read from the associated FW_RSS asset,
which is loaded within the G_RSS template.

Why Server Calls are Done Separately
You may be asking why an additional server call is always involved. For instance, why not
simply retrieve all of the articles for the List Gadget from the G_List template itself? The
answer to this is twofold:

1. Gadget descriptor XML may be expected to be cacheable by the gadget container.
This means that developers should avoid embedding volatile data in the XML.

2. An additional server call helps to separate presentation logic (for example, in G_List)
from the underlying model (in the asset types’ G_JSON templates).

21

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Chapter 3

Creating Your Own Gadgets

• Creating Gadgets on Different CM Sites

• Custom Gadgets

• Prerequisites for Registering Gadgets

Chapter 3. Creating Your Own Gadgets

Creating Gadgets on Different CM Sites
22

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Creating Gadgets on Different CM Sites
The sample gadgets must be enabled on FirstSite II. Developers will be interested in
creating gadgets on different CM sites. The following steps outline the steps for enabling
gadget support on additional CM sites:

1. Enable the FW_CSGadget asset type and its start menu items on the CM site. (By
default, the start menu items are accessible to users with the Designer, Site Admin, or
General Admin role.)

2. Share the following Template assets to the site:
FW_CSGadget/GenerateGadgetXML and FW_CSGadget/ListSiteGadgets

(If you are reusing the sample gadgets, share their templates from FirstSite II, enable
the relevant asset types, and if necessary share the assets. For example, if you are
reusing the RSS Feed Gadget, share the FW_CSGadget/G_RSS Template asset from
FirstSite II and enable the FW_RSS asset type.)

Custom Gadgets
In addition to having a knowledge of sample gadget architecture, it is helpful to see what
other gadgets of type FW_CSGadget can be created. This section outlines the
requirements for creating different types of gadgets.

New Gadget, WebCenter Sites Generates Only XML
You may want to create a new gadget where the only additional content is from another
website. The RSS Feed Gadget is an example of a gadget that functions in this way. See
“RSS Feed Gadget,” on page 16.

Requirements in this scenario are:

• A gadget of type FW_CSGadget referencing the template and asset listed below.

• FW_CSGadget template that generates the body of the gadget descriptor XML (for
example, FW_CSGadget/G_RSS).

• An asset that specifies the URL to be requested in the gadget.

New Gadget, WebCenter Sites Generates XML and Fields
Additional Requests

In this scenario, you will populate a gadget with content directly from one of WebCenter
Sites’ CM sites. The List, ThumbList, and Slideshow gadgets are examples of gadgets that
function in this way. See Figures 3 and 4.

Requirements in this scenario are:

• A gadget of type FW_CSGadget referencing the template and asset listed below.

• FW_CSGadget template (such as G_List) for rendering the body of the gadget
descriptor XML.

• Template(s) for rendering data to be returned in response to the additional requests
made by the gadget code (for example, the G_JSON templates included with the
sample gadgets).

• Assets to be referenced by the gadget (or its additional requests).

Chapter 3. Creating Your Own Gadgets

Prerequisites for Registering Gadgets
23

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Same Gadget Logic, Different Content
You can create gadgets that have the same functionality but pull different sets of content.
Requirements in this scenario are:

• An FW_CSGadget asset that references a pre-existing FW_CSGadget template.

• Assets that provide the gadget with content.

Prerequisites for Registering Gadgets
For gadgets to be recognized by the Gadgets application, they must be registered
(typically by administrators of the Gadgets application). A gadget is accessed via the
WebCenter Sites URL that generates the gadget descriptor XML. This URL can be
quickly obtained for every FW_CSGadget asset on the content management site by
querying the FW_CSGadget/ListSiteGadgets template. The template can be easily
accessed in one of the following ways:

• In the WebCenter Sites Admin interface, preview any FW_CSGadget asset on the site.
In the InSite window, select ListSiteGadgets from the “Template” drop-down
menu.

- Or -

• Open a browser and navigate directly to http://<host>:<port>/<application
context>/wem/<sitename>/FW_CSGadget/ListSiteGadgets (where host,
port, and application context correspond to the WebCenter Sites installation,
and sitename is the name of the content management site where the gadget exists).

The list of sample gadgets and their corresponding URLs is shown in the following figure.

Chapter 3. Creating Your Own Gadgets

Prerequisites for Registering Gadgets
24

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

25

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

A p p e n d i x A

Analyzing Gadget Descriptor XML Files

Each gadget is defined by a descriptor XML. This appendix provides information about
the parameters defined in the descriptor XMLs of the sample gadgets.

This appendix contains the following:

• Sample RSSFeed Gadget

• Sample List Gadget

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample RSSFeed Gadget
26

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Sample RSSFeed Gadget
A gadget’s descriptor XML contains all the data defined for the gadget within the Module
tag. This tag holds information about the gadget’s dependencies, user preferences (if any),
appearance settings, functionality, and so on.

This section analyzes the descriptor XML files of FW_CSGadget assets, using code
snippets from the sample RSSFeed gadget as an example.

Analyzing the code of the RSSFeed gadget’s descriptor XML file

These lines specify the properties and dependencies of the gadget:

<ModulePrefs title="FatWire RSS" height="350">
screenshot="http://localhost:8100/cs/FirstSiteII/gadgets/RSS/

screenshot.png"
thumbnail="http://localhost:8100/cs/FirstSiteII/gadgets/RSS/

thumbnail.png">
<Require feature="dynamic-height"/>

</ModulePrefs>

The following lines define the gadget’s user preferences, which are values for the gadget
that visitors can modify. In this code snippet, visitors will be able to select the number of
news feeds that the RSSFeed gadget displays at one time:

<UserPref name="max" display_name="Number of Items"
datatype="enum" default_value="5">

<EnumValue value="1" display_value="1"/>
<EnumValue value="3" display_value="3"/>
<EnumValue value="5" display_value="5"/>
<EnumValue value="10" display_value="10"/>

</UserPref>

The Content tag contains all of the content for the RSSFeed gadget’s descriptor XML
file, including the gadget’s CSS file, which defines the gadget’s appearance, and the
gadget’s JavaScript (contained within the <script> tag), which specifies the interactive
components and initialization functionality of the gadget.

For example, the CSS file defined within the RSSFeed gadget’s Content tag looks as
follows:

<style type="text/css">
/* === generic styles === */
body #container {

padding: 15px;
padding-bottom: 5px; /* 5 plus 10 from bottom-most entry */
margin: 0;

}
body #container * {

padding: 0;
margin: 0;
font-size: 11px;
font-family: Tahoma,Arial,Helvetica,sans-serif;
color: #666;

}
body #container a, body #container * a {

text-decoration: none;

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample RSSFeed Gadget
27

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

color: #555;
}
body #container a:hover, body #container * a:hover {

color: #3b9cce;
}
.error {

background-color: #fcc;
color: #c00;

}
/* === gadget-specific styles === */
#container .list {

padding-left: 1em; /* provide proper indentation space for
bullets */

}
#container .list li {

padding-bottom: 10px;
}
#container .headline {

font-weight: bold;
}
</style>

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
28

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

Sample List Gadget
The sample List Gadget supports the OAuth protocol. A gadget with OAuth support
contains an OAuth section within the ModulePrefs tag of its descriptor XML. This tag
specifies the following endpoints related to OAuth operations:

The Gadgets application sets pre-defined, system-level gadget preferences in the List
Gadget’s descriptor XML. These preferences are available only to gadgets using the
Gadgets application’s OAuth Service Provider:

The rest of this section analyzes code snippets from the sample List Gadget’s descriptor
XML that pertain to OAuth functionality.

Analyzing OAuth parameters within the sample List Gadget’s code snippets

The <ModulePrefs> tag includes “oauthpopup” as a required feature to demonstrate
OAuth support for this gadget:

<ModulePrefs title="Latest News" height="350">
<Require feature="dynamic-height"/>
<Require feature="oauthpopup"/>

These lines define the OAuth section, which is contained in the ModulePrefs tag:

<OAuth>
<Service name="gs">
<Request url="http://10.120.19.25:8480/user-service/

request_token"/>
<Access url="http://10.120.19.25:8480/user-service/

access_token"/>

Table 1: OAuth URL endpoints

URL Type Description

Request Token URL Initiates the authentication process by the gadget and issues
the request token. The request token is a temporary token
which is active only during the authentication phase. As soon
as the visitor’s credentials are validated and she is logged in,
the request token is exchanged for an access token.

Access Token URL Retrieves the access token in exchange for the request token.

Authorization URL The location that will be opened in a pop-up window to
display the authentication form.

Table 2: Pre-approved request tokens

Parameter Description

gs_request_token The pre-approved token that is passed to the gadget. The
gadget can use this to start an OAuth session. It is a short-
lived, single-use token with a 30 second lifespan.

gs_request_token_secret The secret for the pre-approved request token, which is also
needed to start the OAuth session.

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
29

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

<Authorization url="http://10.120.19.25:8480/user-service/
authorize?oauth_callback=
http%3A%2F%2F10.120.19.25%3A8480%2Fgas-
os%2Fgadgets%2Foauthcallback&gateway=false"/>

</Service>
</OAuth>

This line, located within the fetchData JavaScript function, specifies the URL to which
OAuth requests fire:

var url = userServiceUrl + "/echo?siteId=" +
prefs.getString("gs_site_id");

These lines specify information about the nature of the request. The Gadgets application
behaves accordingly based on these values. The OAUTH_SERVICE_NAME parameter
specifies the service, defined in the <OAuth> section, from which data is requested:

var params = {};
params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;
params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.OAUTH;
params[gadgets.io.RequestParameters.METHOD] =

gadgets.io.MethodType.GET;
params[gadgets.io.RequestParameters.OAUTH_SERVICE_NAME] = "gs";

This line loads the pre-approved request token. Pre-approved request tokens are valid only
once:

var requestToken = prefs.getString("gs_request_token");

These lines specify the pre-approved request token. For more information about the
request tokens, see Table 2:

params[gadgets.io.RequestParameters.OAUTH_REQUEST_TOKEN] =
requestToken;

params[gadgets.io.RequestParameters.OAUTH_REQUEST_TOKEN_SECRET] =
prefs.getString("gs_request_token_secret");

params[gadgets.io.RequestParameters.OAUTH_USE_TOKEN] = "always";

The remaining code in the fetchData function makes a request to the OAuth Service
Provider, and defines the callback function which will handle the response once it is
received:

gadgets.io.makeRequest(url, function (response){...},params)

The if conditions within the callback function define the three possible outcomes when a
request is made and the OAuth signature is enabled:

• If authentication is needed, the response object contains an oauthApprovalUrl
property, which can be used to open the authentication pop-up window containing the
login form.

if (response.oauthApprovalUrl) {
var onOpen = function () {
showOneSection('waiting');
};
var onClose = function () {
fetchData();
};

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
30

Oracle WebCenter Sites Developer’s Guide for Creating Gadgets

var popup = new gadgets.oauth.Popup(response.oauthApprovalUrl,
null, onOpen, onClose);

$('personalize').onclick = popup.createOpenerOnClick();
$('approvaldone').onclick = popup.createApprovedOnClick();
showOneSection('approval');
}

• If the authentication is successful or the visitor has already been authenticated, the
response object contains the data property. The data property contains the server’s
response for the requested URL.

else if (response.data) {
var res = response.data;
$('main').innerHTML = "<div><div style='display:inline;'><img

height='50' src='" + userServiceUrl + res.userpicurl + "'/
></div><div style='margin-left:20px;display:inline;font-
size:14pt;font-weight:bold;'>Hello, " + res.displayname +
"</div></div>";

showOneSection('main');

This line clears the actual gadget’s content and (re-)issues the request for the gadget’s
data, now that the user is authorized:

$('container').innerHTML = "";
makeRequest();
}

• These lines specify the oauthError property which is populated if there is an OAuth
protocol error:

else {
var errmsg = document.createTextNode('OAuth error: ' +

response.oauthError);
$('main').appendChild(errmsg);
showOneSection('main');
}

	Developer’s Guide for Creating Gadgets
	Contents
	About This Guide
	Audience
	Related Documents
	Conventions
	Third-Party Libraries

	Introduction
	Before You Begin
	Gadget Specifications
	Asset Model and Templates
	Sample Assets
	Auxiliary Files
	OAuth Protocol

	Sample Gadgets
	List Gadget
	ThumbList Gadget
	Slideshow Gadget
	RSS Feed Gadget

	Asset Structure

	Template Flow
	Template Flow for the List Gadget
	Differences in Template Flow
	Why Server Calls are Done Separately

	Creating Your Own Gadgets
	Creating Gadgets on Different CM Sites
	Custom Gadgets
	New Gadget, WebCenter Sites Generates Only XML
	New Gadget, WebCenter Sites Generates XML and Fields Additional Requests
	Same Gadget Logic, Different Content

	Prerequisites for Registering Gadgets

	Analyzing Gadget Descriptor XML Files
	Sample RSSFeed Gadget
	Sample List Gadget

