
Oracle® WebCenter Sites
Developing a Java Adapter and Plug-In
for Content Integration Platform

11g Release 1 (11.1.1)

February 2012

Oracle® WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform,
11g Release 1 (11.1.1)

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Tatiana Kolubayev

Contributor: Valentin Vakar, Chandrashekar Avadhani, Suman Saha

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

3

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Table of

Contents

About This Guide .5
Audience . 5
Related Documents . 5
Conventions . 6
Third-Party Libraries . 6

1 Integrating with Custom Source Systems . 7
Customizing WebCenter Sites: Content Integration Platform . 8
Content Integration Agent . 8

2 Creating Adapters and Plug-Ins . 11
Overview . 12
I. Creating a Java Source Adapter . 13
II. Creating a Java Plug-In . 16
III. Enabling javafacility. 19
Troubleshooting and Debugging . 20

Table of Contents
4

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

5

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

About This Guide

This guide shows developers how to extend Oracle WebCenter Sites: Content Integration
Platform to publish from systems of their own choice to Oracle WebCenter Sites.

Applications discussed in this guide are former FatWire products. Naming conventions are
the following:

• Oracle WebCenter Sites is the current name of the product previously known as
FatWire Content Server. In this guide, Oracle WebCenter Sites is also called
WebCenter Sites.

• Oracle WebCenter Sites: Content Integration Platform is the current name of the
application previously known as FatWire Content Integration Platform. In this guide,
Oracle WebCenter Sites: Content Integration Platform is also called Content
Integration Platform, or CIP.

Content Integration Platform integrates with Oracle WebCenter Sites according to
specifications in the Oracle WebCenter Sites 11g Release 1 (11.1.1.x) Certification Matrix.
For additional information, see the release notes for Content Integration Platform. Check
the WebCenter Sites documentation site regularly for updates to the Certification Matrix
and release notes.

Audience
Users of this guide must be Java developers with proficiency in the C++ programming
language.

Related Documents
For more information, see the following documents:

• Oracle WebCenter Sites Administrator’s Guide for Content Integration Platform for
File Systems and Microsoft SharePoint

• Oracle WebCenter Sites Administrator’s Guide for Content Integration Platform for
EMC Documentum

About This Guide
6

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Conventions
The following text conventions are used in this guide:

• Boldface type indicates graphical user interface elements that you select.

• Italic type indicates book titles, emphasis, or variables for which you supply particular
values.

• Monospace type indicates file names, URLs, sample code, or text that appears on the
screen.

• Monospace bold type indicates a command.

Third-Party Libraries
Oracle WebCenter Sites and its applications include third-party libraries. For additional
information, see Oracle WebCenter Sites 11gR1: Third-Party Licenses.

7

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Chapter 1

Integrating with Custom Source Systems

This chapter outlines methods for extending Oracle WebCenter Sites: Content Integration
Platform to support content delivery from custom source systems to Oracle WebCenter
Sites.

This chapter contains the following sections:

• Customizing WebCenter Sites: Content Integration Platform

• Content Integration Agent

Chapter 1. Integrating with Custom Source Systems

 Customizing WebCenter Sites: Content Integration Platform
8

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Customizing WebCenter Sites: Content Integration
Platform

Content Integration Platform (CIP), by default, delivers content from file systems,
Microsoft SharePoint, and EMC Documentum to Oracle WebCenter Sites. Developers can
extend Content Integration Platform to publish from a system of their own choice, such as
a database or custom content management system, by writing a Java-based
implementation consisting of a source adapter and plug-in(s), or just the adapter. Both the
adapter and the plug-ins are supported by the Content Integration Agent component
(Figure 1, on page 9).

A Java source adapter must be written for each source system whose content will be
delivered to Oracle WebCenter Sites. The adapter queries the source system to retrieve its
metadata and binary content. (The adapter must be registered with Content Integration
Agent by means of a statement in the catalog.xml file.)

A plug-in is required only if items retrieved by the adapter must be processed before they
are published to WebCenter Sites. Processing could include for example, extracting
thumbnails from image files or performing a validation step while publishing. Typically,
plug-ins are written to support different file formats or to filter selected items from the
publishing process. Any number of plug-ins can be used with any adapter. Like the
adapter, a plug-in must be registered with the Content Integration Agent (in the
types.xml file).

Content Integration Agent
Content Integration Agent is written in C++ and provides the following components to
support Java-based custom connectors and plug-ins:

• Solid runtime system.

• Pluggable interfaces, used to implement Java-based source connectors and plug-ins.

• XML files named catalog.xml and types.xml, both used to register the custom
source adapter and plug-ins.

• Native source adapter (javaconnector library) and native plug-in (javaplugin
library). Both are written in C++. They are used to make calls to Java code.

• Facilities, which are construction blocks providing some set of functionality to the
Agent runtime. Content Integration Agent hosts the Java Virtual Machine in its
process space in order to delegate calls from the C++ runtime environment to Java
code. The JVM is enabled by registering javafacility in facilities.xml.

Once the Java-based adapter is created and the JVM is enabled, the C++ Agent runtime
system can use the JVM to call Java code via the native adapter (similar process for plug-
ins). For system architecture, see Figure 1B, on page 9.

Procedures for creating Java-based connectors and plug-ins are given in chapter 2, along
with instructions for completing the integration. More information about Content
Integration Agent can be found in the following guides:

• Oracle WebCenter Sites Administrator’s Guide for Content Integration Platform for
File Systems and Microsoft SharePoint

• Oracle WebCenter Sites Administrator’s Guide for Content Integration Platform for
EMC Documentum

Chapter 1. Integrating with Custom Source Systems

 Content Integration Agent
9

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Figure 1: Content Integration Platform

A. Content Integration Agent

B. Source Adapter and Plug-In

javaconnector library

javaplugin library

Chapter 1. Integrating with Custom Source Systems

 Content Integration Agent
10

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

11

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Chapter 2

Creating Adapters and Plug-Ins

This chapter provides instructions for creating a complete integration solution to support
content delivery from any source system to WebCenter Sites.

This chapter contains the following sections:

• Overview

• I. Creating a Java Source Adapter

• II. Creating a Java Plug-In

• III. Enabling javafacility

• Troubleshooting and Debugging

Chapter 2. Creating Adapters and Plug-Ins

 Overview
12

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Overview
Creating an adapter and plug-in involves the following steps:

1. Implementing the pluggable interfaces that are provided within Content Integration
Agent.

2. Registering the implementation(s) with the Content Integration Agent runtime system.

3. Registering javafacility in order to enable the Java Virtual Machine to delegate
calls from the C++ Agent runtime to Java code.

Before a custom adapter (or plug-in) can be successfully used, the data model for the
publishable objects must exist on the WebCenter Sites system and be mapped to the
WebCenter Sites system. The following steps are required:

1. Reproduce the objects’ metadata in WebCenter Sites by creating a dedicated flex
family (or re-using an existing flex family) to store the object types, their attributes,
and the objects themselves.

2. Map object types and attributes to their respective flex family asset instances (created
in the previous step). The map can be created directly in the adapter implementation,
or in the mappings.xml file.

Note

A custom plug-in can be used with any adapter. You can implement and deploy as
many plug-ins as necessary.

Chapter 2. Creating Adapters and Plug-Ins

 I. Creating a Java Source Adapter
13

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

I. Creating a Java Source Adapter
Publishing from an unsupported source system to WebCenter Sites requires you to create a
Java-based source adapter. (A plug-in is not required unless objects retrieved by the
adapter must be processed before they are published.)

To create a Java source adapter

1. Implement the adapter:

Implement the IConnector, IProviderSession, IRepository, and IItem
interfaces. You can optionally implement the InputStream interface if items on your
source system have primary binary content.

Figure 2 shows the relationships among the interfaces. The entry point for the
adapter’s code is a factory class: the IConnector interface implementation.

Figure 2: Adapter and plug-in class diagram

There are different phases in an adapter’s lifetime. Depending on the phase, different
methods are invoked. Figure 3 shows the sequence of calls during each phase.

Note

If you are using a relational database, implement custom views or custom queries in
order for the adapter to work.

Chapter 2. Creating Adapters and Plug-Ins

 I. Creating a Java Source Adapter
14

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Figure 3: Source adapter calls sequence

Analyzing Figure 3: Source adapter calls sequence

The ID, which is passed to the getRepositoryByID function, is taken from one of
the corresponding workspace elements in the catalog.xml file.

Depending on what you pass to the cipcommander, one of the following functions is
invoked:

- If -source_itemid is passed, then getItemByID is invoked passing the
itemid.

- If -source_itemid is omitted, and -source_path is specified, then the
getItemByPath function is invoked.

- If neither -source_itemid or -source_path is specified, then the
getTopFolder function is invoked. (In this case, the entire repository is
published.)

Note: “DC metadata” is “Dublin Core metadata” (http://en.wikipedia.org/wiki/Dublin_Core)

Chapter 2. Creating Adapters and Plug-Ins

 I. Creating a Java Source Adapter
15

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

To ensure uniqueness, maintain a different versionid, itemid, and path for all
items inside the same repository, and keep the names different for all items inside the
same folder. The path must be in the form: <parent path>/<this item name>.

2. Register the adapter:

a. Register the IConnector interface implementation with Content Integration
Agent by adding a ‘connector’ element to catalog.xml (located in
integration_agent/conf/):

<connector id="connector_id"
name="connector_descriptive_name">
<library>javaconnector</library>

<init-params>
<param name="className">connector_class_name</param>

connector-specific_parameters
</init-params>

</connector>

b. Enable publishing by adding a new ‘provider’ element to catalog.xml:

<provider id="provider_id" name="provider_descriptive_name">
<connector-ref refid="connector_id"/>

<init-params/>
provider-specific_parameters

</init-params>
</ provider >

Parameter Description

connector_id Any unique identifier.

connector_descriptive_name Any descriptive name (does not have to be
unique).

connector_class_name Name of the IConnector implementation
created.

connector-specific_parameters Set of parameters that will be passed to
IConnector.initialize during the call.

Parameter Description

provider_id Any unique identifier.

provider_descriptive_name Any descriptive name (doesn’t have to be
unique).

connector_id Adapter’s unique identifier.

provider-specific_parameters Set of parameters that will be passed to
IConnector.login during the call.

Chapter 2. Creating Adapters and Plug-Ins

 II. Creating a Java Plug-In
16

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

c. Deploy the adapter:

Place the adapter’s jar files into the folder <resource>/java/
<connector_id>/lib, and the class files into <resource>/java/
<connector_id>/classes.
The <resource> folder is located within Content Integration Agent.
On Windows: <resource> is <%INSTALLDIR%>
On Unix: <resource> is <$INSTALLDIR/shared/cipagent>

3. If you require a Java plug-in (to process items retrieved by the adapter), continue to
section “II. Creating a Java Plug-In.” Otherwise, enable javafacility (to allow the
Java Virtual Machine to delegate calls to Java code from the C++ Agent runtime). For
instructions, see “III. Enabling javafacility,” on page 19.

II. Creating a Java Plug-In
A plug-in is not required unless objects retrieved by the adapter must be processed before
they are published to the WebCenter Sites system. The main purpose of a plug-in is to
modify the metadata of retrieved items, add metadata to retrieved items, and reject items.

Creating a plug-in is similar to creating a adapter. The steps are as follows:

To create a Java plug-in

1. Implement the plug-in by implementing the IAssetHandler interface (in Content
Integration Agent).

The entry point for a plug-in is the IAssetHandler interface.
This is the only interface which is directly used by the runtime
system. In most cases ExtractMetadata is the only method
you need to implement. Figure 4 shows the calls sequence in a
plug-in’s lifetime.

Note

Adapter classes are loaded by different class loaders to prevent collisions
with different implementations and loading/unloading features. We strongly
advise placing all adapter jar and class files into the <connector_id>
folder, instead of including them into the CLASSPATH environment variable,
or the java.class.path property, or the jre/lib/ext folder.

Note

A custom plug-in can be used with any adapter. You can create and deploy as
many plug-ins as necessary.

Chapter 2. Creating Adapters and Plug-Ins

 II. Creating a Java Plug-In
17

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Figure 4: Plug-in calls sequence

2. Register the plug-in with Content Integration Agent.

a. Add a new plug-in ‘handler’ element to the types.xml file (located in the
integration_agent/conf/ folder):

<handler id="handler_id">
<library>javaplugin</library>

<init-params/>
plugin-specific_parameters

</init-params>
</handler>

b. If you are using Content Interation Platform for EMC Documentum, complete this
step. Otherwise, skip to step c on page 18.

Enable the handler for the selected handler sets. Which handler set to use is
specified during the publication initiation process. Each handler set contains the
list of handlers, which are invoked during the metadata extraction phase in the
Content Integration Agent. Handlers are matched by either MIME type or asset
type.
MIME type has the following form: <major type>/<minor type>
(image/jpeg, for example). There is an option to use '*' for MIME types. It can

Parameter Description

handler_id Custom plug-in’s unique identifier.

plugin-specific
parameters

Plugin-specific parameters that are passed when the
plug-in is initialized.

C++ Native Code IAssetHandler

ExtractMetadata
Metadata replication phase

ctor

initialize

connect
Connection phase

disconnect
Disconnection phase

Chapter 2. Creating Adapters and Plug-Ins

 II. Creating a Java Plug-In
18

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

be applied either to the minor part or the whole MIME type. For example, */*
matches all assets, while text/* matches only text files.
When using the IConnectorContext.guessMIMEType function, it will look
into mimetypes.xml to get the corresponding MIME type for the supplied file
extension. For example the call with "txt" parameter will produce the "text/
plain" result.
Asset types also support the '*' notation, which matches all asset types.
If more then one handler matches a specific item, then both are invoked in the
same sequence in which they are registered within the handler set used. If any of
the matching handlers returns the null object from the IItem.extracMetadata
call, then the item is discarded from future processing and not sent to the target
adapter.

c. Enable the custom plug-in for selected object types by adding “asset-type”
elements to the types.xml file. Items for which this plug-in is invoked will be
filtered according to MIME type.

<asset-type type="MIME_type">
<extensions>

<ext>ext</ext>
 …
</extensions>
<handler-ref refid="handler_id" />

</asset-type>

d. Deploy the plug-in:

Note

The asset-type element in the context of a plug-in is a MIME type
group.

Parameter Description

MIME type MIME type of the item for which this plug-in will be
invoked. MIMEtype must be of the form
<major_type/minor_type>, e.g., text/plain.

A wild-card symbol (*) can also be used. For example:

• To enable the plug-in for all text files, specify:
text/*

• To enable the plug-in for all items, specify:
/

ext File extension, e.g., .txt for text files. The file
extension does not directly affect the plug-in selection
process. However, it is used to “guess’ the MIME type
for those systems where MIME type is not directly
available (e.g., file system).

handler_id Custom plug-in’s unique identifier (specified in the
handler element, in the previous step).

Chapter 2. Creating Adapters and Plug-Ins

 III. Enabling javafacility
19

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Place the plug-in’s jar files into the folder <resource>/java/<plugin_id>/
lib, and the class files into <resource>/java/<plugin_id>/classes.
The <resource> folder is located within Content Integration Agent.
On Windows: <resource> is <%INSTALLDIR%>
On Unix: <resource> is <$INSTALLDIR/shared/cipagent>

3. If you created a custom adapter but have not enabled javafacility, continue to the
next section, “III. Enabling javafacility.”

III. Enabling javafacility
Calling Java code from C++ Agent runtime requires a special facility named java to be
registered in facilities.xml.

To enable javafacility

1. Verify that facilities.xml is not commented (facilities.xml is located in the
integration_agent/conf/ folder).

2. Add the following lines:

<facility name="javafacility">
<library>java</library>

<init-params>
<param name="VMArgparam_id">Java_VM_argument
</param>

<param name="VMLibraryPath">VM_library_path</param>
</init-params>

</facility>

Note

Plug-in classes are loaded by different class loaders to prevent collisions
with different implementations and loading/unloading features. We strongly
advise placing all plug-in jar and class files into the <plugin_id>
folder, instead of including them into the CLASSPATH environment variable,
or the java.class.path property, or the jre/lib/ext folder.

Parameter Description

param_id Parameter’s unique id (any unique value). In order to pass
multiple arguments to the JVM, construct multiple
parameters with different param_id’s.

Java_VM_argument Java VM argument to be passed to the Java VM created
within the Agent runtime process.

Example: <param name=”VMArg0”>-Xmx256m
</param>

Chapter 2. Creating Adapters and Plug-Ins

 Troubleshooting and Debugging
20

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

Troubleshooting and Debugging
When developing custom components for CIP, it is often helpful to see more than just the
default logging messages displayed in the production environment. CIP Agent supports
five different logging levels:

• fatal
• error
• warning
• info
• debug

Use the instructions below to debug custom components in CIP.

• Escalating the logging level in CIP Agent

CIP is set to error by default. To increase the logging level, CIP Agent must run as a
console executable:

1. Stop the CIP Agent system service.

2. Run the cipagent -t debug command.

• Debugging Java custom components

To debug custom Java implementations hosted within the Agent runtime, enable
remote debugging in CIP Agent. For example, to start the remote debugger on port
7007 and suspend CIP Agent to wait until a debugger attaches, add the following lines
to javafacility:

<param name=”VMArg1”>-Xdebug</param>
<param name=”VMArg2”>-Xrunjdwp:transport=dt_socket,

address=7007,server=y,suspend=y</param>

• Escalating the logging level for Sites Agent Services

To get more data about an error in the Sites Agent Services application, set the DEBUG
level in the commons-logging.properties file for the
com.fatwire.logging.csagentservices category. We also recommend setting

VM_library_path Full path to the Java VM library (DLL or shared library)
within the JRE/JDK installation.

For example, for Sun JDK on Windows, VM_library_path
is either:

%JAVA_HOME%\jre\bin\server\jvm.dll

 - or -

%JAVA_HOME%\jre\bin\client\jvm.dll

Note

Do not use the settings shown below on a production system, as they can slow
down the system’s performance.

Parameter Description

Chapter 2. Creating Adapters and Plug-Ins

 Troubleshooting and Debugging
21

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

the DEBUG logging level in the commons-logging.properties file for the
com.fatwire.logging.cs.db category.

Chapter 2. Creating Adapters and Plug-Ins

 Troubleshooting and Debugging
22

Oracle WebCenter Sites: Developing a Java Adapter and Plug-In for Content Integration Platform

	Developing a Java Adapter and Plug-In for Content Integration Platform
	Contents
	About This Guide
	Audience
	Related Documents
	Conventions
	Third-Party Libraries

	Integrating with Custom Source Systems
	Customizing WebCenter Sites: Content Integration Platform
	Content Integration Agent

	Creating Adapters and Plug-Ins
	Overview
	I. Creating a Java Source Adapter
	II. Creating a Java Plug-In
	III. Enabling javafacility
	Troubleshooting and Debugging

